Wang Yuhui, Wei Yanceng, Huang Qiujie, Xiao Jiamu, Zhu Nan‐wen
{"title":"硝酸钙投加频率对污泥生物调理的影响","authors":"Wang Yuhui, Wei Yanceng, Huang Qiujie, Xiao Jiamu, Zhu Nan‐wen","doi":"10.7524/J.ISSN.0254-6108.2019091904","DOIUrl":null,"url":null,"abstract":"Degradable organics in the excess sludge can be decomposed and sped up by denitrifying bacteria with Ca(NO3)2 added, which can enhance the dewaterability of sludge. With the total NO3- dosage of 100 mg·g-1 TS, and the dosing frequencies of Ca(NO3)2 divided into 1, 2, 3 and 6 times during six days respectively, the dewaterability of sludge was observed. It was shown that the sludge CST could be reduced by 65.0%, the SRF was reduced by 73.2%, the protein in extracellular polymeric substance of sludge was reduced, and the protein in S-EPS and LB-EPS was reduced from 13.47 mg·L-1, 11.66 mg·L-1 to 0.52 mg·L-1, 1.43 mg·L-1respectiveLy, the Zeta potential tend to become electroneutral after Ca(NO3)2 added, which was helpful for improve sludge dewaterability. The results also indicated that sludge dewaterability could be improved greatly with Ca (NO3)2 added at one-time, since more nitrite could be produced, which could help release the microbial cytoplasm, the released organics in the microbial cytoplasm, could be used by denitrifying bacteria as carbon source.","PeriodicalId":11714,"journal":{"name":"Environmental Chemistry","volume":"117 1","pages":"291-300"},"PeriodicalIF":2.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of calcium nitrate dosing frequency on biological conditioning of sludge\",\"authors\":\"Wang Yuhui, Wei Yanceng, Huang Qiujie, Xiao Jiamu, Zhu Nan‐wen\",\"doi\":\"10.7524/J.ISSN.0254-6108.2019091904\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Degradable organics in the excess sludge can be decomposed and sped up by denitrifying bacteria with Ca(NO3)2 added, which can enhance the dewaterability of sludge. With the total NO3- dosage of 100 mg·g-1 TS, and the dosing frequencies of Ca(NO3)2 divided into 1, 2, 3 and 6 times during six days respectively, the dewaterability of sludge was observed. It was shown that the sludge CST could be reduced by 65.0%, the SRF was reduced by 73.2%, the protein in extracellular polymeric substance of sludge was reduced, and the protein in S-EPS and LB-EPS was reduced from 13.47 mg·L-1, 11.66 mg·L-1 to 0.52 mg·L-1, 1.43 mg·L-1respectiveLy, the Zeta potential tend to become electroneutral after Ca(NO3)2 added, which was helpful for improve sludge dewaterability. The results also indicated that sludge dewaterability could be improved greatly with Ca (NO3)2 added at one-time, since more nitrite could be produced, which could help release the microbial cytoplasm, the released organics in the microbial cytoplasm, could be used by denitrifying bacteria as carbon source.\",\"PeriodicalId\":11714,\"journal\":{\"name\":\"Environmental Chemistry\",\"volume\":\"117 1\",\"pages\":\"291-300\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Chemistry\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.7524/J.ISSN.0254-6108.2019091904\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Chemistry","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.7524/J.ISSN.0254-6108.2019091904","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Effect of calcium nitrate dosing frequency on biological conditioning of sludge
Degradable organics in the excess sludge can be decomposed and sped up by denitrifying bacteria with Ca(NO3)2 added, which can enhance the dewaterability of sludge. With the total NO3- dosage of 100 mg·g-1 TS, and the dosing frequencies of Ca(NO3)2 divided into 1, 2, 3 and 6 times during six days respectively, the dewaterability of sludge was observed. It was shown that the sludge CST could be reduced by 65.0%, the SRF was reduced by 73.2%, the protein in extracellular polymeric substance of sludge was reduced, and the protein in S-EPS and LB-EPS was reduced from 13.47 mg·L-1, 11.66 mg·L-1 to 0.52 mg·L-1, 1.43 mg·L-1respectiveLy, the Zeta potential tend to become electroneutral after Ca(NO3)2 added, which was helpful for improve sludge dewaterability. The results also indicated that sludge dewaterability could be improved greatly with Ca (NO3)2 added at one-time, since more nitrite could be produced, which could help release the microbial cytoplasm, the released organics in the microbial cytoplasm, could be used by denitrifying bacteria as carbon source.
期刊介绍:
Environmental Chemistry publishes manuscripts addressing the chemistry of the environment (air, water, earth, and biota), including the behaviour and impacts of contaminants and other anthropogenic disturbances. The scope encompasses atmospheric chemistry, geochemistry and biogeochemistry, climate change, marine and freshwater chemistry, polar chemistry, fire chemistry, soil and sediment chemistry, and chemical aspects of ecotoxicology. Papers that take an interdisciplinary approach, while advancing our understanding of the linkages between chemistry and physical or biological processes, are particularly encouraged.
While focusing on the publication of important original research and timely reviews, the journal also publishes essays and opinion pieces on issues of importance to environmental scientists, such as policy and funding.
Papers should be written in a style that is accessible to those outside the field, as the readership will include - in addition to chemists - biologists, toxicologists, soil scientists, and workers from government and industrial institutions. All manuscripts are rigorously peer-reviewed and professionally copy-edited.
Environmental Chemistry is published with the endorsement of the Commonwealth Scientific and Industrial Research Organisation (CSIRO) and the Australian Academy of Science.