{"title":"滑杆气动控制阀的递归神经网络控制","authors":"M. Heidari, H. Homaei","doi":"10.1155/2013/410870","DOIUrl":null,"url":null,"abstract":"This paper presents a neural scheme for controlling an actuator of pneumatic control valve system. Bondgraph method has been used to model the actuator of control valve, in order to compare the response characteristics of valve. The proposed controller is such that the system is always operating in a closed loop, which should lead to better performance characteristics. For comparison, minimum- and full-order observer controllers are also utilized to control the actuator of pneumatic control valve. Simulation results give superior performance of the proposed neural control scheme.","PeriodicalId":7288,"journal":{"name":"Adv. Artif. Neural Syst.","volume":"186 1","pages":"410870:1-410870:7"},"PeriodicalIF":0.0000,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Stem Control of a Sliding-Stem Pneumatic Control Valve Using a Recurrent Neural Network\",\"authors\":\"M. Heidari, H. Homaei\",\"doi\":\"10.1155/2013/410870\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a neural scheme for controlling an actuator of pneumatic control valve system. Bondgraph method has been used to model the actuator of control valve, in order to compare the response characteristics of valve. The proposed controller is such that the system is always operating in a closed loop, which should lead to better performance characteristics. For comparison, minimum- and full-order observer controllers are also utilized to control the actuator of pneumatic control valve. Simulation results give superior performance of the proposed neural control scheme.\",\"PeriodicalId\":7288,\"journal\":{\"name\":\"Adv. Artif. Neural Syst.\",\"volume\":\"186 1\",\"pages\":\"410870:1-410870:7\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Adv. Artif. Neural Syst.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2013/410870\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adv. Artif. Neural Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2013/410870","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Stem Control of a Sliding-Stem Pneumatic Control Valve Using a Recurrent Neural Network
This paper presents a neural scheme for controlling an actuator of pneumatic control valve system. Bondgraph method has been used to model the actuator of control valve, in order to compare the response characteristics of valve. The proposed controller is such that the system is always operating in a closed loop, which should lead to better performance characteristics. For comparison, minimum- and full-order observer controllers are also utilized to control the actuator of pneumatic control valve. Simulation results give superior performance of the proposed neural control scheme.