基于深度学习的第五代非正交多址防御技术研究

Ravisankar Malladi, Manoj Kumar Beuria, Ravi Shankar, S. Singh
{"title":"基于深度学习的第五代非正交多址防御技术研究","authors":"Ravisankar Malladi, Manoj Kumar Beuria, Ravi Shankar, S. Singh","doi":"10.1177/15485129211022857","DOIUrl":null,"url":null,"abstract":"In modern wireless communication scenarios, non-orthogonal multiple access (NOMA) provides high throughput and spectral efficiency for fifth generation (5G) and beyond 5G systems. Traditional NOMA detectors are based on successive interference cancellation (SIC) techniques at both uplink and downlink NOMA transmissions. However, due to imperfect SIC, these detectors are not suitable for defense applications. In this paper, we investigate the 5G multiple-input multiple-output NOMA deep learning technique for defense applications and proposed a learning approach that investigates the communication system’s channel state information automatically and identifies the initial transmission sequences. With the use of the proposed deep neural network, the optimal solution is provided, and performance is much better than the traditional SIC-based NOMA detectors. Through simulations, the analytical outcomes are verified.","PeriodicalId":44661,"journal":{"name":"Journal of Defense Modeling and Simulation-Applications Methodology Technology-JDMS","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2021-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Investigation of the fifth generation non-orthogonal multiple access technique for defense applications using deep learning\",\"authors\":\"Ravisankar Malladi, Manoj Kumar Beuria, Ravi Shankar, S. Singh\",\"doi\":\"10.1177/15485129211022857\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In modern wireless communication scenarios, non-orthogonal multiple access (NOMA) provides high throughput and spectral efficiency for fifth generation (5G) and beyond 5G systems. Traditional NOMA detectors are based on successive interference cancellation (SIC) techniques at both uplink and downlink NOMA transmissions. However, due to imperfect SIC, these detectors are not suitable for defense applications. In this paper, we investigate the 5G multiple-input multiple-output NOMA deep learning technique for defense applications and proposed a learning approach that investigates the communication system’s channel state information automatically and identifies the initial transmission sequences. With the use of the proposed deep neural network, the optimal solution is provided, and performance is much better than the traditional SIC-based NOMA detectors. Through simulations, the analytical outcomes are verified.\",\"PeriodicalId\":44661,\"journal\":{\"name\":\"Journal of Defense Modeling and Simulation-Applications Methodology Technology-JDMS\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2021-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Defense Modeling and Simulation-Applications Methodology Technology-JDMS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/15485129211022857\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Defense Modeling and Simulation-Applications Methodology Technology-JDMS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/15485129211022857","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 6

摘要

在现代无线通信场景中,非正交多址(NOMA)为第五代(5G)及以后的系统提供了高吞吐量和频谱效率。传统的NOMA探测器是基于连续干扰消除(SIC)技术在上行链路和下行链路NOMA传输。然而,由于SIC不完善,这些探测器不适合国防应用。本文研究了5G多输入多输出NOMA深度学习技术在国防领域的应用,提出了一种自动研究通信系统信道状态信息并识别初始传输序列的学习方法。利用所提出的深度神经网络,给出了最优解,其性能远优于传统的基于sic的NOMA检测器。通过仿真验证了分析结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Investigation of the fifth generation non-orthogonal multiple access technique for defense applications using deep learning
In modern wireless communication scenarios, non-orthogonal multiple access (NOMA) provides high throughput and spectral efficiency for fifth generation (5G) and beyond 5G systems. Traditional NOMA detectors are based on successive interference cancellation (SIC) techniques at both uplink and downlink NOMA transmissions. However, due to imperfect SIC, these detectors are not suitable for defense applications. In this paper, we investigate the 5G multiple-input multiple-output NOMA deep learning technique for defense applications and proposed a learning approach that investigates the communication system’s channel state information automatically and identifies the initial transmission sequences. With the use of the proposed deep neural network, the optimal solution is provided, and performance is much better than the traditional SIC-based NOMA detectors. Through simulations, the analytical outcomes are verified.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.80
自引率
12.50%
发文量
40
期刊最新文献
Modeling fog and friction in military enterprise Adapting military doctrine in the shadow of the future Modeling of Russian–Ukrainian war based on fuzzy cognitive map with genetic tuning Decision-making in the shadow of strategic competition costs Multiple UAVs on a shared tether: Use cases, modeling, and probabilistic path planning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1