{"title":"5G通信中一种基于SISL的插槽和堆叠贴片滤波天线","authors":"Ningning Yan, Hetian Zhou, Kaixue Ma","doi":"10.3390/electronics12061331","DOIUrl":null,"url":null,"abstract":"A filtering antenna based on the Substrate Integrated Suspended Line (SISL) platform applied for the n78 band of 5G is presented in this paper. The antenna has a segmented feed line, a rectangular driven patch etched with a double I-slot, and a squared stacked patch with grooves at the edges of both sides. The etched slots and the stacked patch introduce two new resonance frequencies increasing the bandwidth. Furthermore, the etched slots excite a deep radiation null in the low-frequency band, and the stacked patch coupled with the driven patch produces two deep radiation nulls in the high-frequency band. Three radiation nulls enable high selectivity of the antenna. The filtering antenna works at 3.2–3.89 GHz, which can be applied to the 5G (n78, 3.3–3.8 GHz) frequency band. The peak gain in the band can reach 9.21 dBi, and the out-of-band suppression levels are higher than 18.47 dB.","PeriodicalId":11646,"journal":{"name":"Electronics","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2023-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Filtering Antenna with Slots and Stacked Patch Based on SISL for 5G Communications\",\"authors\":\"Ningning Yan, Hetian Zhou, Kaixue Ma\",\"doi\":\"10.3390/electronics12061331\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A filtering antenna based on the Substrate Integrated Suspended Line (SISL) platform applied for the n78 band of 5G is presented in this paper. The antenna has a segmented feed line, a rectangular driven patch etched with a double I-slot, and a squared stacked patch with grooves at the edges of both sides. The etched slots and the stacked patch introduce two new resonance frequencies increasing the bandwidth. Furthermore, the etched slots excite a deep radiation null in the low-frequency band, and the stacked patch coupled with the driven patch produces two deep radiation nulls in the high-frequency band. Three radiation nulls enable high selectivity of the antenna. The filtering antenna works at 3.2–3.89 GHz, which can be applied to the 5G (n78, 3.3–3.8 GHz) frequency band. The peak gain in the band can reach 9.21 dBi, and the out-of-band suppression levels are higher than 18.47 dB.\",\"PeriodicalId\":11646,\"journal\":{\"name\":\"Electronics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/electronics12061331\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/electronics12061331","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
A Filtering Antenna with Slots and Stacked Patch Based on SISL for 5G Communications
A filtering antenna based on the Substrate Integrated Suspended Line (SISL) platform applied for the n78 band of 5G is presented in this paper. The antenna has a segmented feed line, a rectangular driven patch etched with a double I-slot, and a squared stacked patch with grooves at the edges of both sides. The etched slots and the stacked patch introduce two new resonance frequencies increasing the bandwidth. Furthermore, the etched slots excite a deep radiation null in the low-frequency band, and the stacked patch coupled with the driven patch produces two deep radiation nulls in the high-frequency band. Three radiation nulls enable high selectivity of the antenna. The filtering antenna works at 3.2–3.89 GHz, which can be applied to the 5G (n78, 3.3–3.8 GHz) frequency band. The peak gain in the band can reach 9.21 dBi, and the out-of-band suppression levels are higher than 18.47 dB.
ElectronicsComputer Science-Computer Networks and Communications
CiteScore
1.10
自引率
10.30%
发文量
3515
审稿时长
16.71 days
期刊介绍:
Electronics (ISSN 2079-9292; CODEN: ELECGJ) is an international, open access journal on the science of electronics and its applications published quarterly online by MDPI.