{"title":"电磁搅拌下钢坯结晶器内流动、凝固及溶质输运的数值模拟","authors":"Yaoguang Li, Yan-hui Sun, X. Bai","doi":"10.1051/METAL/2021015","DOIUrl":null,"url":null,"abstract":"In this study, a coupled three-dimensional model of the billet continuous casting mold process was developed to investigate the characteristics of the macroscopic transmission behaviors under different mold electromagnetic stirring (M-EMS) parameters. The mold curvature was also considered during the modeling of electromagnetic and flow fields. The results indicate that the macroscopic physical quantities had nonsymmetrical distributions in the mold because of the mold curvature. However, the influence of mold curvature on the electromagnetic force could be ignored. The horizontal swirling flow caused by the M-EMS became stronger as the current density increased, which enhanced the dissipation of the molten steel superheat and promoted the growth of the solidification shell. However, the flushing of the bias hot jet slowed the growth of the local solidified shell. Meanwhile, the washing effect of the melt flow on the solidification front caused the solute element content near the billet surface to fluctuate. In addition, the distribution of the solute element content became more uneven in the strand transverse direction as the current density increased.","PeriodicalId":18527,"journal":{"name":"Metallurgical Research & Technology","volume":"67 1","pages":"221"},"PeriodicalIF":0.9000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Numerical simulation of the flow, solidification, and solute transport in a billet mold under electromagnetic stirring\",\"authors\":\"Yaoguang Li, Yan-hui Sun, X. Bai\",\"doi\":\"10.1051/METAL/2021015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, a coupled three-dimensional model of the billet continuous casting mold process was developed to investigate the characteristics of the macroscopic transmission behaviors under different mold electromagnetic stirring (M-EMS) parameters. The mold curvature was also considered during the modeling of electromagnetic and flow fields. The results indicate that the macroscopic physical quantities had nonsymmetrical distributions in the mold because of the mold curvature. However, the influence of mold curvature on the electromagnetic force could be ignored. The horizontal swirling flow caused by the M-EMS became stronger as the current density increased, which enhanced the dissipation of the molten steel superheat and promoted the growth of the solidification shell. However, the flushing of the bias hot jet slowed the growth of the local solidified shell. Meanwhile, the washing effect of the melt flow on the solidification front caused the solute element content near the billet surface to fluctuate. In addition, the distribution of the solute element content became more uneven in the strand transverse direction as the current density increased.\",\"PeriodicalId\":18527,\"journal\":{\"name\":\"Metallurgical Research & Technology\",\"volume\":\"67 1\",\"pages\":\"221\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metallurgical Research & Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1051/METAL/2021015\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metallurgical Research & Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1051/METAL/2021015","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
Numerical simulation of the flow, solidification, and solute transport in a billet mold under electromagnetic stirring
In this study, a coupled three-dimensional model of the billet continuous casting mold process was developed to investigate the characteristics of the macroscopic transmission behaviors under different mold electromagnetic stirring (M-EMS) parameters. The mold curvature was also considered during the modeling of electromagnetic and flow fields. The results indicate that the macroscopic physical quantities had nonsymmetrical distributions in the mold because of the mold curvature. However, the influence of mold curvature on the electromagnetic force could be ignored. The horizontal swirling flow caused by the M-EMS became stronger as the current density increased, which enhanced the dissipation of the molten steel superheat and promoted the growth of the solidification shell. However, the flushing of the bias hot jet slowed the growth of the local solidified shell. Meanwhile, the washing effect of the melt flow on the solidification front caused the solute element content near the billet surface to fluctuate. In addition, the distribution of the solute element content became more uneven in the strand transverse direction as the current density increased.
期刊介绍:
Metallurgical Research and Technology (MRT) is a peer-reviewed bi-monthly journal publishing original high-quality research papers in areas ranging from process metallurgy to metal product properties and applications of ferrous and non-ferrous metals and alloys, including light-metals. It covers also the materials involved in the metal processing as ores, refractories and slags.
The journal is listed in the citation index Web of Science and has an Impact Factor.
It is highly concerned by the technological innovation as a support of the metallurgical industry at a time when it has to tackle severe challenges like energy, raw materials, sustainability, environment... Strengthening and enhancing the dialogue between science and industry is at the heart of the scope of MRT. This is why it welcomes manuscripts focusing on industrial practice, as well as basic metallurgical knowledge or review articles.