{"title":"美国东南部夏季降水的代际变化:乔治亚州亚特兰大附近可能的城市影响的证据","authors":"J. Diem, T. Mote","doi":"10.1175/JAM2221.1","DOIUrl":null,"url":null,"abstract":"Through modification of the planetary boundary layer, urbanization has the potential to have a significant impact on precipitation totals locally. Using daily summer-season precipitation data at 30 stations from 1953 to 2002, this study explores the possibility of urban effects as causes of spatial anomalies in precipitation in a zone within 180 km of Atlanta, Georgia. The time period is divided into consecutive epochs (e.g., 1953–77 and 1978–2002), and interepochal differences in precipitation totals, heavy-precipitation days, cumulative heavy precipitation, and atmospheric conditions are explored. The southern stations experienced significant decreases in precipitation, whereas significant precipitation increases occurred at central/west-central stations. The most striking increases occurred at Norcross, Georgia, which is 30 km northeast of downtown Atlanta; Norcross had the third smallest number of heavy-precipitation days during 1953–77, but, during 1978–2002, it had the most heavy-precipitation days. Not only did the amount of urban land cover upwind of Norcross increase substantially from the earlier to the later epochs, but regionwide dewpoint temperatures also increased significantly. Therefore, it is suspected that the increased precipitation at Norcross was caused by urban effects, and these effects may have been enhanced by increased atmospheric humidity.","PeriodicalId":15026,"journal":{"name":"Journal of Applied Meteorology","volume":"14 20 1","pages":"717-730"},"PeriodicalIF":0.0000,"publicationDate":"2005-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"63","resultStr":"{\"title\":\"Interepochal Changes in Summer Precipitation in the Southeastern United States: Evidence of Possible Urban Effects near Atlanta, Georgia\",\"authors\":\"J. Diem, T. Mote\",\"doi\":\"10.1175/JAM2221.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Through modification of the planetary boundary layer, urbanization has the potential to have a significant impact on precipitation totals locally. Using daily summer-season precipitation data at 30 stations from 1953 to 2002, this study explores the possibility of urban effects as causes of spatial anomalies in precipitation in a zone within 180 km of Atlanta, Georgia. The time period is divided into consecutive epochs (e.g., 1953–77 and 1978–2002), and interepochal differences in precipitation totals, heavy-precipitation days, cumulative heavy precipitation, and atmospheric conditions are explored. The southern stations experienced significant decreases in precipitation, whereas significant precipitation increases occurred at central/west-central stations. The most striking increases occurred at Norcross, Georgia, which is 30 km northeast of downtown Atlanta; Norcross had the third smallest number of heavy-precipitation days during 1953–77, but, during 1978–2002, it had the most heavy-precipitation days. Not only did the amount of urban land cover upwind of Norcross increase substantially from the earlier to the later epochs, but regionwide dewpoint temperatures also increased significantly. Therefore, it is suspected that the increased precipitation at Norcross was caused by urban effects, and these effects may have been enhanced by increased atmospheric humidity.\",\"PeriodicalId\":15026,\"journal\":{\"name\":\"Journal of Applied Meteorology\",\"volume\":\"14 20 1\",\"pages\":\"717-730\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"63\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Meteorology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1175/JAM2221.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Meteorology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1175/JAM2221.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Interepochal Changes in Summer Precipitation in the Southeastern United States: Evidence of Possible Urban Effects near Atlanta, Georgia
Through modification of the planetary boundary layer, urbanization has the potential to have a significant impact on precipitation totals locally. Using daily summer-season precipitation data at 30 stations from 1953 to 2002, this study explores the possibility of urban effects as causes of spatial anomalies in precipitation in a zone within 180 km of Atlanta, Georgia. The time period is divided into consecutive epochs (e.g., 1953–77 and 1978–2002), and interepochal differences in precipitation totals, heavy-precipitation days, cumulative heavy precipitation, and atmospheric conditions are explored. The southern stations experienced significant decreases in precipitation, whereas significant precipitation increases occurred at central/west-central stations. The most striking increases occurred at Norcross, Georgia, which is 30 km northeast of downtown Atlanta; Norcross had the third smallest number of heavy-precipitation days during 1953–77, but, during 1978–2002, it had the most heavy-precipitation days. Not only did the amount of urban land cover upwind of Norcross increase substantially from the earlier to the later epochs, but regionwide dewpoint temperatures also increased significantly. Therefore, it is suspected that the increased precipitation at Norcross was caused by urban effects, and these effects may have been enhanced by increased atmospheric humidity.