多幅图像重建三维场景的可能性估计

E. A. Dmitriev, V. Myasnikov
{"title":"多幅图像重建三维场景的可能性估计","authors":"E. A. Dmitriev, V. Myasnikov","doi":"10.18287/1613-0073-2019-2391-293-296","DOIUrl":null,"url":null,"abstract":"This paper presents a pixel-by-pixel possibility estimation of 3D scene reconstruction from multiple images. This method estimates conjugate pairs number with convolutional neural networks for further 3D reconstruction using classic approach. We considered neural networks that showed good results in semantic segmentation problem. The efficiency criterion of an algorithm is the resulting estimation accuracy. We conducted all experiments on images from Unity 3d program. The results of experiments showed the effectiveness of our approach in 3D scene reconstruction problem.","PeriodicalId":10486,"journal":{"name":"Collection of selected papers of the III International Conference on Information Technology and Nanotechnology","volume":"58 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Possibility estimation of 3D scene reconstruction from multiple images\",\"authors\":\"E. A. Dmitriev, V. Myasnikov\",\"doi\":\"10.18287/1613-0073-2019-2391-293-296\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a pixel-by-pixel possibility estimation of 3D scene reconstruction from multiple images. This method estimates conjugate pairs number with convolutional neural networks for further 3D reconstruction using classic approach. We considered neural networks that showed good results in semantic segmentation problem. The efficiency criterion of an algorithm is the resulting estimation accuracy. We conducted all experiments on images from Unity 3d program. The results of experiments showed the effectiveness of our approach in 3D scene reconstruction problem.\",\"PeriodicalId\":10486,\"journal\":{\"name\":\"Collection of selected papers of the III International Conference on Information Technology and Nanotechnology\",\"volume\":\"58 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Collection of selected papers of the III International Conference on Information Technology and Nanotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18287/1613-0073-2019-2391-293-296\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Collection of selected papers of the III International Conference on Information Technology and Nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18287/1613-0073-2019-2391-293-296","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

提出了一种基于多幅图像的三维场景重构的逐像素可能性估计方法。该方法利用卷积神经网络估计共轭对数,利用经典方法进一步进行三维重建。我们考虑了在语义分割问题上表现良好的神经网络。算法的效率标准是得到的估计精度。所有实验都是在Unity 3d程序中的图像上进行的。实验结果表明了该方法在三维场景重建中的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Possibility estimation of 3D scene reconstruction from multiple images
This paper presents a pixel-by-pixel possibility estimation of 3D scene reconstruction from multiple images. This method estimates conjugate pairs number with convolutional neural networks for further 3D reconstruction using classic approach. We considered neural networks that showed good results in semantic segmentation problem. The efficiency criterion of an algorithm is the resulting estimation accuracy. We conducted all experiments on images from Unity 3d program. The results of experiments showed the effectiveness of our approach in 3D scene reconstruction problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Investigation of optimal configurations of a convolutional neural network for the identification of objects in real-time Recognition of forest and shrub communities on the base of remotely sensed data supported by ground studies Selection of aggregated classifiers for the prediction of the state of technical objects Method for reconstructing the real coordinates of an object from its plane image Using Models of Parallel Specialized Processors to Solve the Problem of Signal Separation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1