h3pw12o40 -氨基功能化CdFe12O19@SiO2纳米复合材料促进咪唑的合成

IF 4.2 3区 材料科学 Q2 MATERIALS SCIENCE, COMPOSITES Nanocomposites Pub Date : 2020-12-07 DOI:10.1080/20550324.2020.1858246
J. Safaei‐Ghomi, Ali Kareem Abbas, Marzieh Shahpiri
{"title":"h3pw12o40 -氨基功能化CdFe12O19@SiO2纳米复合材料促进咪唑的合成","authors":"J. Safaei‐Ghomi, Ali Kareem Abbas, Marzieh Shahpiri","doi":"10.1080/20550324.2020.1858246","DOIUrl":null,"url":null,"abstract":"Abstract H3PW12O40-amino-functionalized CdFe12O19@SiO2 nanocomposite has been applied as an effective nanocatalyst for the preparation of imidazoles by three-component reactions of benzil, ammonium acetate, and benzaldehydes under solvent-free condition. H3PW12O40-amino-functionalized CdFe12O19@SiO2 nanocomposites has been identified by powder X-ray diffraction, scanning electronic microscopy, energy dispersive X-ray spectroscopy, vibrating sample magnetometer, thermal gravimetric analysis, and Fourier transform infrared spectroscopy. This method provides several benefits including easy work-up, the use solvent-free conditions, the low catalyst loading and the reusability of the catalyst. Recently the use of environmental and green catalysts which can be easily recycled has received significant attention. Besides environmental advantages, such recoverable catalysts can also provide a platform for heterogeneous catalysis, green chemistry, and environmentally benign protocols in the near future. Graphical abstract","PeriodicalId":18872,"journal":{"name":"Nanocomposites","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2020-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Synthesis of imidazoles promoted by H3PW12O40-amino-functionalized CdFe12O19@SiO2 nanocomposite\",\"authors\":\"J. Safaei‐Ghomi, Ali Kareem Abbas, Marzieh Shahpiri\",\"doi\":\"10.1080/20550324.2020.1858246\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract H3PW12O40-amino-functionalized CdFe12O19@SiO2 nanocomposite has been applied as an effective nanocatalyst for the preparation of imidazoles by three-component reactions of benzil, ammonium acetate, and benzaldehydes under solvent-free condition. H3PW12O40-amino-functionalized CdFe12O19@SiO2 nanocomposites has been identified by powder X-ray diffraction, scanning electronic microscopy, energy dispersive X-ray spectroscopy, vibrating sample magnetometer, thermal gravimetric analysis, and Fourier transform infrared spectroscopy. This method provides several benefits including easy work-up, the use solvent-free conditions, the low catalyst loading and the reusability of the catalyst. Recently the use of environmental and green catalysts which can be easily recycled has received significant attention. Besides environmental advantages, such recoverable catalysts can also provide a platform for heterogeneous catalysis, green chemistry, and environmentally benign protocols in the near future. Graphical abstract\",\"PeriodicalId\":18872,\"journal\":{\"name\":\"Nanocomposites\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2020-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanocomposites\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/20550324.2020.1858246\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanocomposites","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/20550324.2020.1858246","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 4

摘要

摘要:h3pw12o40 -氨基功能化CdFe12O19@SiO2纳米复合材料作为一种有效的纳米催化剂,在无溶剂条件下由苄基、乙酸铵和苯甲醛三组分反应制备咪唑。通过粉末x射线衍射、扫描电子显微镜、能量色散x射线能谱、振动样品磁强计、热重分析和傅里叶变换红外光谱对h3pw12o40 -氨基功能化CdFe12O19@SiO2纳米复合材料进行了鉴定。该方法具有多种优点,包括易于处理,使用无溶剂条件,低催化剂负载和催化剂的可重复使用性。近年来,使用易于回收利用的环保绿色催化剂受到了广泛关注。除了环境优势外,这种可回收催化剂还可以在不久的将来为多相催化、绿色化学和环境友好协议提供平台。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Synthesis of imidazoles promoted by H3PW12O40-amino-functionalized CdFe12O19@SiO2 nanocomposite
Abstract H3PW12O40-amino-functionalized CdFe12O19@SiO2 nanocomposite has been applied as an effective nanocatalyst for the preparation of imidazoles by three-component reactions of benzil, ammonium acetate, and benzaldehydes under solvent-free condition. H3PW12O40-amino-functionalized CdFe12O19@SiO2 nanocomposites has been identified by powder X-ray diffraction, scanning electronic microscopy, energy dispersive X-ray spectroscopy, vibrating sample magnetometer, thermal gravimetric analysis, and Fourier transform infrared spectroscopy. This method provides several benefits including easy work-up, the use solvent-free conditions, the low catalyst loading and the reusability of the catalyst. Recently the use of environmental and green catalysts which can be easily recycled has received significant attention. Besides environmental advantages, such recoverable catalysts can also provide a platform for heterogeneous catalysis, green chemistry, and environmentally benign protocols in the near future. Graphical abstract
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanocomposites
Nanocomposites Multiple-
CiteScore
7.40
自引率
15.20%
发文量
18
审稿时长
16 weeks
期刊最新文献
Solution blow-spun polyacrylonitrile–polyamide thin-film nanofibrous composite membrane for the removal of fermentation inhibitors Advances and innovations of hybrid nanofiber-based matrices for dental-tissue engineering Improving the classification of a nanocomposite using nanoparticles based on a meta-analysis study, recurrent neural network and recurrent neural network Monte-Carlo algorithms Navigating the novel nanoparticles: current insights, innovations, and future vistas in detection and treatment of cervical cancer CuO/NiO nanocomposite prepared with Saussurea costus extract for super-capacitor energy storage application
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1