Zhenzhen Gu, F. Corcoglioniti, D. Lanti, A. Mosca, Guohui Xiao, Jingliu Xiong, D. Calvanese
{"title":"数据联合系统的系统概述","authors":"Zhenzhen Gu, F. Corcoglioniti, D. Lanti, A. Mosca, Guohui Xiao, Jingliu Xiong, D. Calvanese","doi":"10.3233/sw-223201","DOIUrl":null,"url":null,"abstract":"Data federation addresses the problem of uniformly accessing multiple, possibly heterogeneous data sources, by mapping them into a unified schema, such as an RDF(S)/OWL ontology or a relational schema, and by supporting the execution of queries, like SPARQL or SQL queries, over that unified schema. Data explosion in volume and variety has made data federation increasingly popular in many application domains. Hence, many data federation systems have been developed in industry and academia, and it has become challenging for users to select suitable systems to achieve their objectives. In order to systematically analyze and compare these systems, we propose an evaluation framework comprising four dimensions: (i) federation capabilities, i.e., query language, data source, and federation techniques; (ii) data security, i.e., authentication, authorization, auditing, encryption, and data masking; (iii) interface, i.e., graphical interface, command line interface, and application programming interface; and (iv) development, i.e., main development language, deployment, commercial support, open source, and release. Using this framework, we thoroughly studied 51 data federation systems from the Semantic Web and Database communities. This paper shares the results of our investigation and aims to provide reference material and insights for users, developers and researchers selecting or further developing data federation systems.","PeriodicalId":48694,"journal":{"name":"Semantic Web","volume":"51 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2022-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A systematic overview of data federation systems\",\"authors\":\"Zhenzhen Gu, F. Corcoglioniti, D. Lanti, A. Mosca, Guohui Xiao, Jingliu Xiong, D. Calvanese\",\"doi\":\"10.3233/sw-223201\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data federation addresses the problem of uniformly accessing multiple, possibly heterogeneous data sources, by mapping them into a unified schema, such as an RDF(S)/OWL ontology or a relational schema, and by supporting the execution of queries, like SPARQL or SQL queries, over that unified schema. Data explosion in volume and variety has made data federation increasingly popular in many application domains. Hence, many data federation systems have been developed in industry and academia, and it has become challenging for users to select suitable systems to achieve their objectives. In order to systematically analyze and compare these systems, we propose an evaluation framework comprising four dimensions: (i) federation capabilities, i.e., query language, data source, and federation techniques; (ii) data security, i.e., authentication, authorization, auditing, encryption, and data masking; (iii) interface, i.e., graphical interface, command line interface, and application programming interface; and (iv) development, i.e., main development language, deployment, commercial support, open source, and release. Using this framework, we thoroughly studied 51 data federation systems from the Semantic Web and Database communities. This paper shares the results of our investigation and aims to provide reference material and insights for users, developers and researchers selecting or further developing data federation systems.\",\"PeriodicalId\":48694,\"journal\":{\"name\":\"Semantic Web\",\"volume\":\"51 1\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2022-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Semantic Web\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.3233/sw-223201\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Semantic Web","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3233/sw-223201","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Data federation addresses the problem of uniformly accessing multiple, possibly heterogeneous data sources, by mapping them into a unified schema, such as an RDF(S)/OWL ontology or a relational schema, and by supporting the execution of queries, like SPARQL or SQL queries, over that unified schema. Data explosion in volume and variety has made data federation increasingly popular in many application domains. Hence, many data federation systems have been developed in industry and academia, and it has become challenging for users to select suitable systems to achieve their objectives. In order to systematically analyze and compare these systems, we propose an evaluation framework comprising four dimensions: (i) federation capabilities, i.e., query language, data source, and federation techniques; (ii) data security, i.e., authentication, authorization, auditing, encryption, and data masking; (iii) interface, i.e., graphical interface, command line interface, and application programming interface; and (iv) development, i.e., main development language, deployment, commercial support, open source, and release. Using this framework, we thoroughly studied 51 data federation systems from the Semantic Web and Database communities. This paper shares the results of our investigation and aims to provide reference material and insights for users, developers and researchers selecting or further developing data federation systems.
Semantic WebCOMPUTER SCIENCE, ARTIFICIAL INTELLIGENCEC-COMPUTER SCIENCE, INFORMATION SYSTEMS
CiteScore
8.30
自引率
6.70%
发文量
68
期刊介绍:
The journal Semantic Web – Interoperability, Usability, Applicability brings together researchers from various fields which share the vision and need for more effective and meaningful ways to share information across agents and services on the future internet and elsewhere. As such, Semantic Web technologies shall support the seamless integration of data, on-the-fly composition and interoperation of Web services, as well as more intuitive search engines. The semantics – or meaning – of information, however, cannot be defined without a context, which makes personalization, trust, and provenance core topics for Semantic Web research. New retrieval paradigms, user interfaces, and visualization techniques have to unleash the power of the Semantic Web and at the same time hide its complexity from the user. Based on this vision, the journal welcomes contributions ranging from theoretical and foundational research over methods and tools to descriptions of concrete ontologies and applications in all areas. We especially welcome papers which add a social, spatial, and temporal dimension to Semantic Web research, as well as application-oriented papers making use of formal semantics.