建筑、土地和水基光伏的空间分辨发电概况:荷兰能源转型情景的案例研究

Q2 Earth and Planetary Sciences Advances in Geosciences Pub Date : 2023-07-11 DOI:10.5194/adgeo-58-199-2023
N. Nortier, Michel Paardekooper, Chris Lucas, Anne Blankert, A. van der Neut, Stefan Luxembourg, Agnes Mewe, W. V. van Sark
{"title":"建筑、土地和水基光伏的空间分辨发电概况:荷兰能源转型情景的案例研究","authors":"N. Nortier, Michel Paardekooper, Chris Lucas, Anne Blankert, A. van der Neut, Stefan Luxembourg, Agnes Mewe, W. V. van Sark","doi":"10.5194/adgeo-58-199-2023","DOIUrl":null,"url":null,"abstract":"Abstract. Alongside a transition from steerable and centralized traditional electricity generation to intermittent and more decentralized renewable electricity generation from solar panels and wind turbines, Dutch energy transition scenarios project a widespread deployment of heat pumps and electric vehicles towards 2050. While clearly contributing to the decarbonization of the Dutch energy system, these developments impose challenges regarding electricity supply-demand mismatch and grid congestion. Spatially resolved electricity demand and supply profiles are required to gain a better insight into where and when such problems are likely to occur within the different scenarios. The present paper focuses on Dutch solar energy supply and features the construction of geodatabases of scenario-specific, spatially resolved electricity generation profiles for building, land and water-bound PV. Country-level PV capacities are geographically distributed based on spatial variance in roof PV potential and availability of suitable land and water use areas. Corresponding electricity generation profiles are constructed using historical meteorological measurements, a diffuse fraction model and a anisotropic transposition model. Empirically found performance ratio profiles are applied to account for a multitude of performance loss factors, including shading, dust and inverter efficiency. In 2050, building-bound capacity is projected to show only limited overlap with both land-bound and water-bound PV capacity. On the other hand, regions with considerable water-bound PV capacity also tend to show considerable land-bound PV capacity. Compared to the present-day situation, yearly country-level PV electricity generation is projected to be a factor 18.5, 15.7, or 7.7 higher in 2050 when respectively following the Regional, National or International Steering scenarios.\n","PeriodicalId":7329,"journal":{"name":"Advances in Geosciences","volume":"133 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spatially resolved generation profiles for building, land and water-bound PV: a case study of four Dutch energy transition scenarios\",\"authors\":\"N. Nortier, Michel Paardekooper, Chris Lucas, Anne Blankert, A. van der Neut, Stefan Luxembourg, Agnes Mewe, W. V. van Sark\",\"doi\":\"10.5194/adgeo-58-199-2023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. Alongside a transition from steerable and centralized traditional electricity generation to intermittent and more decentralized renewable electricity generation from solar panels and wind turbines, Dutch energy transition scenarios project a widespread deployment of heat pumps and electric vehicles towards 2050. While clearly contributing to the decarbonization of the Dutch energy system, these developments impose challenges regarding electricity supply-demand mismatch and grid congestion. Spatially resolved electricity demand and supply profiles are required to gain a better insight into where and when such problems are likely to occur within the different scenarios. The present paper focuses on Dutch solar energy supply and features the construction of geodatabases of scenario-specific, spatially resolved electricity generation profiles for building, land and water-bound PV. Country-level PV capacities are geographically distributed based on spatial variance in roof PV potential and availability of suitable land and water use areas. Corresponding electricity generation profiles are constructed using historical meteorological measurements, a diffuse fraction model and a anisotropic transposition model. Empirically found performance ratio profiles are applied to account for a multitude of performance loss factors, including shading, dust and inverter efficiency. In 2050, building-bound capacity is projected to show only limited overlap with both land-bound and water-bound PV capacity. On the other hand, regions with considerable water-bound PV capacity also tend to show considerable land-bound PV capacity. Compared to the present-day situation, yearly country-level PV electricity generation is projected to be a factor 18.5, 15.7, or 7.7 higher in 2050 when respectively following the Regional, National or International Steering scenarios.\\n\",\"PeriodicalId\":7329,\"journal\":{\"name\":\"Advances in Geosciences\",\"volume\":\"133 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Geosciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5194/adgeo-58-199-2023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Earth and Planetary Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Geosciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/adgeo-58-199-2023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 0

摘要

摘要除了从可操纵的集中式传统发电向太阳能电池板和风力涡轮机的间歇性和更分散的可再生发电过渡之外,荷兰的能源转型方案预计到2050年将广泛部署热泵和电动汽车。虽然这些发展明显有助于荷兰能源系统的脱碳,但也带来了电力供需不匹配和电网拥堵方面的挑战。需要空间解决电力需求和供应概况,以便更好地了解在不同情况下可能发生此类问题的地点和时间。本论文的重点是荷兰的太阳能供应,并以建设特定场景的地理数据库为特色,为建筑、土地和水系光伏提供空间解决的发电剖面。国家一级的光伏发电能力是根据屋顶光伏潜力的空间差异和适当土地和水利用区域的可用性进行地理分布的。利用历史气象测量、扩散分数模型和各向异性转位模型构建了相应的发电剖面。经验发现的性能比配置文件适用于考虑多种性能损失因素,包括阴影,灰尘和逆变器效率。预计到2050年,受建筑约束的容量与受陆地约束和受水约束的光伏容量的重叠部分有限。另一方面,具有相当大水界光伏容量的地区也往往显示出相当大的陆界光伏容量。与目前的情况相比,按照区域、国家或国际的指导设想,预计2050年国家一级每年的光伏发电量将分别高出18.5、15.7或7.7倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Spatially resolved generation profiles for building, land and water-bound PV: a case study of four Dutch energy transition scenarios
Abstract. Alongside a transition from steerable and centralized traditional electricity generation to intermittent and more decentralized renewable electricity generation from solar panels and wind turbines, Dutch energy transition scenarios project a widespread deployment of heat pumps and electric vehicles towards 2050. While clearly contributing to the decarbonization of the Dutch energy system, these developments impose challenges regarding electricity supply-demand mismatch and grid congestion. Spatially resolved electricity demand and supply profiles are required to gain a better insight into where and when such problems are likely to occur within the different scenarios. The present paper focuses on Dutch solar energy supply and features the construction of geodatabases of scenario-specific, spatially resolved electricity generation profiles for building, land and water-bound PV. Country-level PV capacities are geographically distributed based on spatial variance in roof PV potential and availability of suitable land and water use areas. Corresponding electricity generation profiles are constructed using historical meteorological measurements, a diffuse fraction model and a anisotropic transposition model. Empirically found performance ratio profiles are applied to account for a multitude of performance loss factors, including shading, dust and inverter efficiency. In 2050, building-bound capacity is projected to show only limited overlap with both land-bound and water-bound PV capacity. On the other hand, regions with considerable water-bound PV capacity also tend to show considerable land-bound PV capacity. Compared to the present-day situation, yearly country-level PV electricity generation is projected to be a factor 18.5, 15.7, or 7.7 higher in 2050 when respectively following the Regional, National or International Steering scenarios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Geosciences
Advances in Geosciences Earth and Planetary Sciences-Earth and Planetary Sciences (miscellaneous)
CiteScore
3.70
自引率
0.00%
发文量
16
审稿时长
30 weeks
期刊介绍: Advances in Geosciences (ADGEO) is an international, interdisciplinary journal for fast publication of collections of short, but self-contained communications in the Earth, planetary and solar system sciences, published in separate volumes online with the option of a publication on paper (print-on-demand). The collections may include papers presented at scientific meetings (proceedings) or articles on a well defined topic compiled by individual editors or organizations (special publications). The evaluation of the manuscript is organized by Guest-Editors, i.e. either by the conveners of a session of a conference or by the organizers of a meeting or workshop or by editors appointed otherwise, and their chosen referees.
期刊最新文献
Terrain-based evaluation of groundwater potential and long-term monitoring at the catchment scale in Taiwan Criteria for selection of technology to exploit groundwater in water-scarce area in Vietnam Multi-salinity core flooding study in clay-bearing sandstones, a contribution to geothermal reservoir characterisation Preface to the special issue of the Division Energy, Resources and the Environment at the EGU General Assembly 2023 Storm Franz: Societal and energy impacts in northwest Europe on 11–12 January 2007
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1