基于张量分解的非均匀线性阵列混合MIMO通信信道估计

A. Koochakzadeh, P. Pal
{"title":"基于张量分解的非均匀线性阵列混合MIMO通信信道估计","authors":"A. Koochakzadeh, P. Pal","doi":"10.1109/SAM48682.2020.9104312","DOIUrl":null,"url":null,"abstract":"This paper considers the problem of channel estimation for millimeter wave wireless communication channels. Many existing channel estimation approaches utilize the spatial sparsity of mmWave channels and employ compressive sensing based techniques to estimate the parameters of the channel, such as the Angles of Arrival (AoA) and Angles of Departure (AoD) of the channel paths. In this paper, we show how the problem of channel estimation can be converted into a fourth order tensor decomposition problem, which offers several benefits. Firstly, we do not need a grid-based search for the angles. More importantly, our algorithm is applicable for both uniform and non-uniform arrays at the transmitter and receiver. In particular, our method can exploit well-known benefits offered by the difference co-array of suitably designed sparse arrays and provably identify a larger number of channel paths compared to existing approaches1.","PeriodicalId":6753,"journal":{"name":"2020 IEEE 11th Sensor Array and Multichannel Signal Processing Workshop (SAM)","volume":"83 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Channel Estimation for Hybrid MIMO Communication with (Non-) Uniform Linear Arrays via Tensor Decomposition\",\"authors\":\"A. Koochakzadeh, P. Pal\",\"doi\":\"10.1109/SAM48682.2020.9104312\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper considers the problem of channel estimation for millimeter wave wireless communication channels. Many existing channel estimation approaches utilize the spatial sparsity of mmWave channels and employ compressive sensing based techniques to estimate the parameters of the channel, such as the Angles of Arrival (AoA) and Angles of Departure (AoD) of the channel paths. In this paper, we show how the problem of channel estimation can be converted into a fourth order tensor decomposition problem, which offers several benefits. Firstly, we do not need a grid-based search for the angles. More importantly, our algorithm is applicable for both uniform and non-uniform arrays at the transmitter and receiver. In particular, our method can exploit well-known benefits offered by the difference co-array of suitably designed sparse arrays and provably identify a larger number of channel paths compared to existing approaches1.\",\"PeriodicalId\":6753,\"journal\":{\"name\":\"2020 IEEE 11th Sensor Array and Multichannel Signal Processing Workshop (SAM)\",\"volume\":\"83 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 11th Sensor Array and Multichannel Signal Processing Workshop (SAM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SAM48682.2020.9104312\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 11th Sensor Array and Multichannel Signal Processing Workshop (SAM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAM48682.2020.9104312","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

研究毫米波无线通信信道的信道估计问题。许多现有的信道估计方法利用毫米波信道的空间稀疏性,并采用基于压缩感知的技术来估计信道参数,如信道路径的到达角(AoA)和出发角(AoD)。在本文中,我们展示了如何将信道估计问题转换为四阶张量分解问题,这提供了几个好处。首先,我们不需要基于网格的角度搜索。更重要的是,我们的算法既适用于均匀阵列,也适用于非均匀阵列。特别是,我们的方法可以利用适当设计的稀疏阵列的差异共阵列所提供的众所周知的好处,并且与现有方法相比,可以证明识别更多数量的通道路径1。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Channel Estimation for Hybrid MIMO Communication with (Non-) Uniform Linear Arrays via Tensor Decomposition
This paper considers the problem of channel estimation for millimeter wave wireless communication channels. Many existing channel estimation approaches utilize the spatial sparsity of mmWave channels and employ compressive sensing based techniques to estimate the parameters of the channel, such as the Angles of Arrival (AoA) and Angles of Departure (AoD) of the channel paths. In this paper, we show how the problem of channel estimation can be converted into a fourth order tensor decomposition problem, which offers several benefits. Firstly, we do not need a grid-based search for the angles. More importantly, our algorithm is applicable for both uniform and non-uniform arrays at the transmitter and receiver. In particular, our method can exploit well-known benefits offered by the difference co-array of suitably designed sparse arrays and provably identify a larger number of channel paths compared to existing approaches1.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
GPU-accelerated parallel optimization for sparse regularization Efficient Beamforming Training and Channel Estimation for mmWave MIMO-OFDM Systems Online Robust Reduced-Rank Regression Block Sparsity Based Chirp Transform for Modeling Marine Mammal Whistle Calls Deterministic Coherence-Based Performance Guarantee for Noisy Sparse Subspace Clustering using Greedy Neighbor Selection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1