去噪研究进展

Y. Jung
{"title":"去噪研究进展","authors":"Y. Jung","doi":"10.12941/JKSIAM.2014.18.143","DOIUrl":null,"url":null,"abstract":"This paper aims to give a quick view on denoising without comprehensive details. Denoising can be understood as removing unwanted parts in signals and images. Noise incorporates intrinsic random fluctuations in the data. Since noise is ubiquitous, denoising methods and models are diverse. Starting from what noise means, we briefly discuss a denoising model as maximum a posteriori estimation and relate it with a variational form or energy model. After that we present a few major branches in image and signal processing; filtering, shrinkage or thresholding, regularization and data adapted methods, although it may not be a general way of classifying denoising methods.","PeriodicalId":41717,"journal":{"name":"Journal of the Korean Society for Industrial and Applied Mathematics","volume":"43 1","pages":"143-156"},"PeriodicalIF":0.3000,"publicationDate":"2014-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A REVIEW ON DENOISING\",\"authors\":\"Y. Jung\",\"doi\":\"10.12941/JKSIAM.2014.18.143\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper aims to give a quick view on denoising without comprehensive details. Denoising can be understood as removing unwanted parts in signals and images. Noise incorporates intrinsic random fluctuations in the data. Since noise is ubiquitous, denoising methods and models are diverse. Starting from what noise means, we briefly discuss a denoising model as maximum a posteriori estimation and relate it with a variational form or energy model. After that we present a few major branches in image and signal processing; filtering, shrinkage or thresholding, regularization and data adapted methods, although it may not be a general way of classifying denoising methods.\",\"PeriodicalId\":41717,\"journal\":{\"name\":\"Journal of the Korean Society for Industrial and Applied Mathematics\",\"volume\":\"43 1\",\"pages\":\"143-156\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2014-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Korean Society for Industrial and Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12941/JKSIAM.2014.18.143\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Korean Society for Industrial and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12941/JKSIAM.2014.18.143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1

摘要

本文的目的是对去噪问题给出一个简单的看法,但没有详细的介绍。去噪可以理解为去除信号和图像中不需要的部分。噪声包含了数据中固有的随机波动。由于噪声无处不在,去噪的方法和模型多种多样。从噪声的含义出发,我们简要地讨论了作为最大后验估计的去噪模型,并将其与变分形式或能量模型联系起来。然后介绍了图像和信号处理的几个主要分支;过滤、收缩或阈值、正则化和数据适应方法,尽管它可能不是分类去噪方法的一般方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A REVIEW ON DENOISING
This paper aims to give a quick view on denoising without comprehensive details. Denoising can be understood as removing unwanted parts in signals and images. Noise incorporates intrinsic random fluctuations in the data. Since noise is ubiquitous, denoising methods and models are diverse. Starting from what noise means, we briefly discuss a denoising model as maximum a posteriori estimation and relate it with a variational form or energy model. After that we present a few major branches in image and signal processing; filtering, shrinkage or thresholding, regularization and data adapted methods, although it may not be a general way of classifying denoising methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
33.30%
发文量
0
期刊最新文献
A Study on Pupil Detection and Tracking Methods Based on Image Data Analysis GREEN’S FUNCTION APPROACH TO THERMAL DEFLECTION OF A THIN HOLLOW CIRCULAR DISK UNDER AXISYMMETRIC HEAT SOURCE EXISTENCE OF SOLUTION FOR IMPULSIVE FRACTIONAL DIFFERENTIAL EQUATIONS VIA TOPOLOGICAL DEGREE METHOD THE STABILITY OF GAUGE-UZAWA METHOD TO SOLVE NANOFLUID A LOCAL CONSERVATIVE MULTISCALE METHOD FOR ELLIPTIC PROBLEMS WITH OSCILLATING COEFFICIENTS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1