利用对象和场景语义进行大规模视频理解

Zuxuan Wu, Yanwei Fu, Yu-Gang Jiang, L. Sigal
{"title":"利用对象和场景语义进行大规模视频理解","authors":"Zuxuan Wu, Yanwei Fu, Yu-Gang Jiang, L. Sigal","doi":"10.1109/CVPR.2016.339","DOIUrl":null,"url":null,"abstract":"Large-scale action recognition and video categorization are important problems in computer vision. To address these problems, we propose a novel object-and scene-based semantic fusion network and representation. Our semantic fusion network combines three streams of information using a three-layer neural network: (i) frame-based low-level CNN features, (ii) object features from a state-of-the-art large-scale CNN object-detector trained to recognize 20K classes, and (iii) scene features from a state-of-the-art CNN scene-detector trained to recognize 205 scenes. The trained network achieves improvements in supervised activity and video categorization in two complex large-scale datasets - ActivityNet and FCVID, respectively. Further, by examining and back propagating information through the fusion network, semantic relationships (correlations) between video classes and objects/scenes can be discovered. These video class-object/video class-scene relationships can in turn be used as semantic representation for the video classes themselves. We illustrate effectiveness of this semantic representation through experiments on zero-shot action/video classification and clustering.","PeriodicalId":6515,"journal":{"name":"2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"7 1","pages":"3112-3121"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"87","resultStr":"{\"title\":\"Harnessing Object and Scene Semantics for Large-Scale Video Understanding\",\"authors\":\"Zuxuan Wu, Yanwei Fu, Yu-Gang Jiang, L. Sigal\",\"doi\":\"10.1109/CVPR.2016.339\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Large-scale action recognition and video categorization are important problems in computer vision. To address these problems, we propose a novel object-and scene-based semantic fusion network and representation. Our semantic fusion network combines three streams of information using a three-layer neural network: (i) frame-based low-level CNN features, (ii) object features from a state-of-the-art large-scale CNN object-detector trained to recognize 20K classes, and (iii) scene features from a state-of-the-art CNN scene-detector trained to recognize 205 scenes. The trained network achieves improvements in supervised activity and video categorization in two complex large-scale datasets - ActivityNet and FCVID, respectively. Further, by examining and back propagating information through the fusion network, semantic relationships (correlations) between video classes and objects/scenes can be discovered. These video class-object/video class-scene relationships can in turn be used as semantic representation for the video classes themselves. We illustrate effectiveness of this semantic representation through experiments on zero-shot action/video classification and clustering.\",\"PeriodicalId\":6515,\"journal\":{\"name\":\"2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)\",\"volume\":\"7 1\",\"pages\":\"3112-3121\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"87\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.2016.339\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2016.339","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 87

摘要

大规模动作识别和视频分类是计算机视觉中的重要问题。为了解决这些问题,我们提出了一种新的基于对象和场景的语义融合网络和表示。我们的语义融合网络使用三层神经网络结合了三个信息流:(i)基于帧的低级CNN特征,(ii)来自最先进的大规模CNN对象检测器的对象特征,训练以识别20K个类别,以及(iii)来自最先进的CNN场景检测器的场景特征,训练以识别205个场景。训练后的网络分别在ActivityNet和FCVID两个复杂的大规模数据集上实现了监督活动和视频分类的改进。此外,通过融合网络检查和反向传播信息,可以发现视频类和对象/场景之间的语义关系(相关性)。这些视频类-对象/视频类-场景关系反过来可以用作视频类本身的语义表示。我们通过零镜头动作/视频分类和聚类实验说明了这种语义表示的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Harnessing Object and Scene Semantics for Large-Scale Video Understanding
Large-scale action recognition and video categorization are important problems in computer vision. To address these problems, we propose a novel object-and scene-based semantic fusion network and representation. Our semantic fusion network combines three streams of information using a three-layer neural network: (i) frame-based low-level CNN features, (ii) object features from a state-of-the-art large-scale CNN object-detector trained to recognize 20K classes, and (iii) scene features from a state-of-the-art CNN scene-detector trained to recognize 205 scenes. The trained network achieves improvements in supervised activity and video categorization in two complex large-scale datasets - ActivityNet and FCVID, respectively. Further, by examining and back propagating information through the fusion network, semantic relationships (correlations) between video classes and objects/scenes can be discovered. These video class-object/video class-scene relationships can in turn be used as semantic representation for the video classes themselves. We illustrate effectiveness of this semantic representation through experiments on zero-shot action/video classification and clustering.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Sketch Me That Shoe Multivariate Regression on the Grassmannian for Predicting Novel Domains How Hard Can It Be? Estimating the Difficulty of Visual Search in an Image Discovering the Physical Parts of an Articulated Object Class from Multiple Videos Simultaneous Optical Flow and Intensity Estimation from an Event Camera
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1