Cécile Daversin-Catty, C. Richardson, A. J. Ellingsrud, M. Rognes
{"title":"混合域有限元方法的抽象与自动算法","authors":"Cécile Daversin-Catty, C. Richardson, A. J. Ellingsrud, M. Rognes","doi":"10.1145/3471138","DOIUrl":null,"url":null,"abstract":"Mixed dimensional partial differential equations (PDEs) are equations coupling unknown fields defined over domains of differing topological dimension. Such equations naturally arise in a wide range of scientific fields including geology, physiology, biology, and fracture mechanics. Mixed dimensional PDEs are also commonly encountered when imposing non-standard conditions over a subspace of lower dimension, e.g., through a Lagrange multiplier. In this article, we present general abstractions and algorithms for finite element discretizations of mixed domain and mixed dimensional PDEs of codimension up to one (i.e., nD-mD with |n-m| ≤ 1). We introduce high-level mathematical software abstractions together with lower-level algorithms for expressing and efficiently solving such coupled systems. The concepts introduced here have also been implemented in the context of the FEniCS finite element software. We illustrate the new features through a range of examples, including a constrained Poisson problem, a set of Stokes-type flow models, and a model for ionic electrodiffusion.","PeriodicalId":7036,"journal":{"name":"ACM Transactions on Mathematical Software (TOMS)","volume":"115 1","pages":"1 - 36"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Abstractions and Automated Algorithms for Mixed Domain Finite Element Methods\",\"authors\":\"Cécile Daversin-Catty, C. Richardson, A. J. Ellingsrud, M. Rognes\",\"doi\":\"10.1145/3471138\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mixed dimensional partial differential equations (PDEs) are equations coupling unknown fields defined over domains of differing topological dimension. Such equations naturally arise in a wide range of scientific fields including geology, physiology, biology, and fracture mechanics. Mixed dimensional PDEs are also commonly encountered when imposing non-standard conditions over a subspace of lower dimension, e.g., through a Lagrange multiplier. In this article, we present general abstractions and algorithms for finite element discretizations of mixed domain and mixed dimensional PDEs of codimension up to one (i.e., nD-mD with |n-m| ≤ 1). We introduce high-level mathematical software abstractions together with lower-level algorithms for expressing and efficiently solving such coupled systems. The concepts introduced here have also been implemented in the context of the FEniCS finite element software. We illustrate the new features through a range of examples, including a constrained Poisson problem, a set of Stokes-type flow models, and a model for ionic electrodiffusion.\",\"PeriodicalId\":7036,\"journal\":{\"name\":\"ACM Transactions on Mathematical Software (TOMS)\",\"volume\":\"115 1\",\"pages\":\"1 - 36\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Mathematical Software (TOMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3471138\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Mathematical Software (TOMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3471138","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Abstractions and Automated Algorithms for Mixed Domain Finite Element Methods
Mixed dimensional partial differential equations (PDEs) are equations coupling unknown fields defined over domains of differing topological dimension. Such equations naturally arise in a wide range of scientific fields including geology, physiology, biology, and fracture mechanics. Mixed dimensional PDEs are also commonly encountered when imposing non-standard conditions over a subspace of lower dimension, e.g., through a Lagrange multiplier. In this article, we present general abstractions and algorithms for finite element discretizations of mixed domain and mixed dimensional PDEs of codimension up to one (i.e., nD-mD with |n-m| ≤ 1). We introduce high-level mathematical software abstractions together with lower-level algorithms for expressing and efficiently solving such coupled systems. The concepts introduced here have also been implemented in the context of the FEniCS finite element software. We illustrate the new features through a range of examples, including a constrained Poisson problem, a set of Stokes-type flow models, and a model for ionic electrodiffusion.