{"title":"分支先锋:将分支功能分解为预测和解析指令","authors":"Daniel S. McFarlin, C. Zilles","doi":"10.1145/2749469.2750400","DOIUrl":null,"url":null,"abstract":"While control speculation is highly effective for generating good schedules in out-of-order processors, it is less effective for in-order processors because compilers have trouble scheduling in the presence of unbiased branches, even when those branches are highly predictable. In this paper, we demonstrate a novel architectural branch decomposition that separates the prediction and deconvergence point of a branch from its resolution, which enables the compiler to profitably schedule across predictable, but unbiased branches. We show that the hardware support for this branch architecture is a trivial extension of existing systems and describe a simple code transformation for exploiting this architectural support. As architectural changes are required, this technique is most compelling for a dynamic binary translation-based system like Project Denver. We evaluate the performance improvements enabled by this transformation for several in-order configurations across the SPEC 2006 benchmark suites. We show that our technique produces a Geomean speedup of 11% for SPEC 2006 Integer, with speedups as large as 35%. As floating point benchmarks contain fewer unbiased, but predictable branches, our Geomean speedup on SPEC 2006 FP is 7%, with a maximum speedup of 26%.","PeriodicalId":6878,"journal":{"name":"2015 ACM/IEEE 42nd Annual International Symposium on Computer Architecture (ISCA)","volume":"55 1","pages":"323-335"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Branch vanguard: Decomposing branch functionality into prediction and resolution instructions\",\"authors\":\"Daniel S. McFarlin, C. Zilles\",\"doi\":\"10.1145/2749469.2750400\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"While control speculation is highly effective for generating good schedules in out-of-order processors, it is less effective for in-order processors because compilers have trouble scheduling in the presence of unbiased branches, even when those branches are highly predictable. In this paper, we demonstrate a novel architectural branch decomposition that separates the prediction and deconvergence point of a branch from its resolution, which enables the compiler to profitably schedule across predictable, but unbiased branches. We show that the hardware support for this branch architecture is a trivial extension of existing systems and describe a simple code transformation for exploiting this architectural support. As architectural changes are required, this technique is most compelling for a dynamic binary translation-based system like Project Denver. We evaluate the performance improvements enabled by this transformation for several in-order configurations across the SPEC 2006 benchmark suites. We show that our technique produces a Geomean speedup of 11% for SPEC 2006 Integer, with speedups as large as 35%. As floating point benchmarks contain fewer unbiased, but predictable branches, our Geomean speedup on SPEC 2006 FP is 7%, with a maximum speedup of 26%.\",\"PeriodicalId\":6878,\"journal\":{\"name\":\"2015 ACM/IEEE 42nd Annual International Symposium on Computer Architecture (ISCA)\",\"volume\":\"55 1\",\"pages\":\"323-335\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 ACM/IEEE 42nd Annual International Symposium on Computer Architecture (ISCA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2749469.2750400\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 ACM/IEEE 42nd Annual International Symposium on Computer Architecture (ISCA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2749469.2750400","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Branch vanguard: Decomposing branch functionality into prediction and resolution instructions
While control speculation is highly effective for generating good schedules in out-of-order processors, it is less effective for in-order processors because compilers have trouble scheduling in the presence of unbiased branches, even when those branches are highly predictable. In this paper, we demonstrate a novel architectural branch decomposition that separates the prediction and deconvergence point of a branch from its resolution, which enables the compiler to profitably schedule across predictable, but unbiased branches. We show that the hardware support for this branch architecture is a trivial extension of existing systems and describe a simple code transformation for exploiting this architectural support. As architectural changes are required, this technique is most compelling for a dynamic binary translation-based system like Project Denver. We evaluate the performance improvements enabled by this transformation for several in-order configurations across the SPEC 2006 benchmark suites. We show that our technique produces a Geomean speedup of 11% for SPEC 2006 Integer, with speedups as large as 35%. As floating point benchmarks contain fewer unbiased, but predictable branches, our Geomean speedup on SPEC 2006 FP is 7%, with a maximum speedup of 26%.