Djillali Benziadi, M. Berber, M. Mebrek, T. Ouahrani, Mohammed El Keurti, A. Boudali
{"title":"间隙V掺杂SrO (SrVxO)的结构、弹性、电子和磁性:FP‐LAPW方法","authors":"Djillali Benziadi, M. Berber, M. Mebrek, T. Ouahrani, Mohammed El Keurti, A. Boudali","doi":"10.1002/crat.202100071","DOIUrl":null,"url":null,"abstract":"In order to unveil the effect of interstitial V‐doped SrO compound an ab initio calculation is carried out within the FP‐LAPW+lo method. To do this task, the modified GGA‐PBEsol potential is employed to predict structural, electronic, and magnetic properties of two alloys, SrV0.125O and SrV0.25O. The lattice parameters are found in good agreement with the existing theoretical and experimental data. The calculation shows both SrV0.125O and SrV0.25O alloys are energetically and mechanically stable. The interstitial doping changes the ionic nature of the SrO compound in half‐metallic ferromagnetic comportment one, with a spin polarization of 100% at the Fermi level. Magnetic properties are also predicted. After a deep analysis, the low magnetic moment is attributed to the strong hybridization of O‐p‐V‐d orbitals.","PeriodicalId":10797,"journal":{"name":"Crystal Research and Technology","volume":"10 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2021-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Structural, Elastic, Electronic, and Magnetic Properties of Interstitial V‐Doped SrO (SrVxO): FP‐LAPW Method\",\"authors\":\"Djillali Benziadi, M. Berber, M. Mebrek, T. Ouahrani, Mohammed El Keurti, A. Boudali\",\"doi\":\"10.1002/crat.202100071\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to unveil the effect of interstitial V‐doped SrO compound an ab initio calculation is carried out within the FP‐LAPW+lo method. To do this task, the modified GGA‐PBEsol potential is employed to predict structural, electronic, and magnetic properties of two alloys, SrV0.125O and SrV0.25O. The lattice parameters are found in good agreement with the existing theoretical and experimental data. The calculation shows both SrV0.125O and SrV0.25O alloys are energetically and mechanically stable. The interstitial doping changes the ionic nature of the SrO compound in half‐metallic ferromagnetic comportment one, with a spin polarization of 100% at the Fermi level. Magnetic properties are also predicted. After a deep analysis, the low magnetic moment is attributed to the strong hybridization of O‐p‐V‐d orbitals.\",\"PeriodicalId\":10797,\"journal\":{\"name\":\"Crystal Research and Technology\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2021-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Crystal Research and Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/crat.202100071\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CRYSTALLOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crystal Research and Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/crat.202100071","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CRYSTALLOGRAPHY","Score":null,"Total":0}
Structural, Elastic, Electronic, and Magnetic Properties of Interstitial V‐Doped SrO (SrVxO): FP‐LAPW Method
In order to unveil the effect of interstitial V‐doped SrO compound an ab initio calculation is carried out within the FP‐LAPW+lo method. To do this task, the modified GGA‐PBEsol potential is employed to predict structural, electronic, and magnetic properties of two alloys, SrV0.125O and SrV0.25O. The lattice parameters are found in good agreement with the existing theoretical and experimental data. The calculation shows both SrV0.125O and SrV0.25O alloys are energetically and mechanically stable. The interstitial doping changes the ionic nature of the SrO compound in half‐metallic ferromagnetic comportment one, with a spin polarization of 100% at the Fermi level. Magnetic properties are also predicted. After a deep analysis, the low magnetic moment is attributed to the strong hybridization of O‐p‐V‐d orbitals.
期刊介绍:
The journal Crystal Research and Technology is a pure online Journal (since 2012).
Crystal Research and Technology is an international journal examining all aspects of research within experimental, industrial, and theoretical crystallography. The journal covers the relevant aspects of
-crystal growth techniques and phenomena (including bulk growth, thin films)
-modern crystalline materials (e.g. smart materials, nanocrystals, quasicrystals, liquid crystals)
-industrial crystallisation
-application of crystals in materials science, electronics, data storage, and optics
-experimental, simulation and theoretical studies of the structural properties of crystals
-crystallographic computing