加入肉桂精油的糖棕榈纳米纤维素/淀粉生物聚合物复合材料的形态、水屏障和生物降解性能

Q2 Physics and Astronomy Physical Sciences Reviews Pub Date : 2023-05-11 DOI:10.1515/psr-2022-0029
R. Syafiq, S. M. Sapuan, M. Y. M. Mohd Zuhri, S. H. Othman, R. A. Ilyas
{"title":"加入肉桂精油的糖棕榈纳米纤维素/淀粉生物聚合物复合材料的形态、水屏障和生物降解性能","authors":"R. Syafiq, S. M. Sapuan, M. Y. M. Mohd Zuhri, S. H. Othman, R. A. Ilyas","doi":"10.1515/psr-2022-0029","DOIUrl":null,"url":null,"abstract":"Abstract In the past few decades, there has been increased interest in the use of natural fibers as reinforcement in bioplastic polymer composites because it is biodegradable. This is a result of the drawbacks of biodegradable polymer-based materials, which are brittle, intractable, and poorly water-sensitive. Natural fibers are chosen because they may be obtained organically, can be collected safely, and can be less expensive. In this work, cinnamon essential oil (CEO)/sugar palm nanocellulose/starch biopolymer composites were casted to investigate the morphological, water barrier and biodegradable properties. From the research, it shows water absorption increased regarding the plasticizer concentration. Besides, water vapor permeability (WVP) and solubility of the different concentration plasticizer used in the biopolymer shows an increasing trend due to high water content. All films degrade completely after the 12th day indicating the biodegradability of the film. Furthermore, seal strength for the lower concentrations of plasticizer shows the higher strength, while GS4.5 cannot be sealed due to high water contents. The images show the compatible films with slightly yellowish and transparent films. The variation of plasticizers did not affect the antibacterial activity of CEO inside the film forming solution. Overall, cinnamon essential oil (CEO)/sugar palm nanocellulose/starch biopolymer composites are good potential to enhance their suitability for food packaging applications.","PeriodicalId":20156,"journal":{"name":"Physical Sciences Reviews","volume":"75 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Morphological, water barrier and biodegradable properties of sugar palm nanocellulose/starch biopolymer composites incorporated with cinnamon essential oils\",\"authors\":\"R. Syafiq, S. M. Sapuan, M. Y. M. Mohd Zuhri, S. H. Othman, R. A. Ilyas\",\"doi\":\"10.1515/psr-2022-0029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In the past few decades, there has been increased interest in the use of natural fibers as reinforcement in bioplastic polymer composites because it is biodegradable. This is a result of the drawbacks of biodegradable polymer-based materials, which are brittle, intractable, and poorly water-sensitive. Natural fibers are chosen because they may be obtained organically, can be collected safely, and can be less expensive. In this work, cinnamon essential oil (CEO)/sugar palm nanocellulose/starch biopolymer composites were casted to investigate the morphological, water barrier and biodegradable properties. From the research, it shows water absorption increased regarding the plasticizer concentration. Besides, water vapor permeability (WVP) and solubility of the different concentration plasticizer used in the biopolymer shows an increasing trend due to high water content. All films degrade completely after the 12th day indicating the biodegradability of the film. Furthermore, seal strength for the lower concentrations of plasticizer shows the higher strength, while GS4.5 cannot be sealed due to high water contents. The images show the compatible films with slightly yellowish and transparent films. The variation of plasticizers did not affect the antibacterial activity of CEO inside the film forming solution. Overall, cinnamon essential oil (CEO)/sugar palm nanocellulose/starch biopolymer composites are good potential to enhance their suitability for food packaging applications.\",\"PeriodicalId\":20156,\"journal\":{\"name\":\"Physical Sciences Reviews\",\"volume\":\"75 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Sciences Reviews\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/psr-2022-0029\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Sciences Reviews","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/psr-2022-0029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 1

摘要

在过去的几十年里,由于天然纤维是可生物降解的,人们对使用天然纤维作为生物塑料聚合物复合材料的增强材料越来越感兴趣。这是由于可生物降解聚合物基材料的缺点造成的,这些材料易碎、难处理、水敏感性差。选择天然纤维是因为它们可以有机获得,可以安全收集,而且价格便宜。本研究以肉桂精油/糖棕榈纳米纤维素/淀粉生物聚合物复合材料为材料,研究其形态、水屏障和生物降解性能。研究表明,随着增塑剂浓度的增加,吸水率增加。此外,生物聚合物中不同浓度增塑剂的水蒸气渗透性(WVP)和溶解度均因含水量高而呈增加趋势。12天后所有膜完全降解,表明膜的生物降解性。增塑剂浓度越低,密封强度越高,而GS4.5含水量高,无法密封。图像显示相容膜与微黄透明膜。增塑剂的变化对成膜液中CEO的抑菌活性没有影响。综上所示,肉桂精油/糖棕榈纳米纤维素/淀粉生物聚合物复合材料在食品包装中的应用前景广阔。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Morphological, water barrier and biodegradable properties of sugar palm nanocellulose/starch biopolymer composites incorporated with cinnamon essential oils
Abstract In the past few decades, there has been increased interest in the use of natural fibers as reinforcement in bioplastic polymer composites because it is biodegradable. This is a result of the drawbacks of biodegradable polymer-based materials, which are brittle, intractable, and poorly water-sensitive. Natural fibers are chosen because they may be obtained organically, can be collected safely, and can be less expensive. In this work, cinnamon essential oil (CEO)/sugar palm nanocellulose/starch biopolymer composites were casted to investigate the morphological, water barrier and biodegradable properties. From the research, it shows water absorption increased regarding the plasticizer concentration. Besides, water vapor permeability (WVP) and solubility of the different concentration plasticizer used in the biopolymer shows an increasing trend due to high water content. All films degrade completely after the 12th day indicating the biodegradability of the film. Furthermore, seal strength for the lower concentrations of plasticizer shows the higher strength, while GS4.5 cannot be sealed due to high water contents. The images show the compatible films with slightly yellowish and transparent films. The variation of plasticizers did not affect the antibacterial activity of CEO inside the film forming solution. Overall, cinnamon essential oil (CEO)/sugar palm nanocellulose/starch biopolymer composites are good potential to enhance their suitability for food packaging applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Sciences Reviews
Physical Sciences Reviews MULTIDISCIPLINARY SCIENCES-
CiteScore
2.40
自引率
0.00%
发文量
173
期刊最新文献
Preparing new secondary science teachers in the context of sustainable development goals: green and sustainable chemistry A facile and efficient one-pot 3-component reaction (3-CR) method for the synthesis of thiazine-based heterocyclic compounds using zwitterion adduct intermediates The workshops on computational applications in secondary metabolite discovery (CAiSMD) Activated carbon-mediated adsorption of emerging contaminants Carbon metal nanoparticle composites for the removal of pollutants
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1