交叉螺旋凹窝强化管热工性能数值研究

IF 1.6 4区 工程技术 Q3 ENGINEERING, MECHANICAL Journal of Thermal Science and Engineering Applications Pub Date : 2023-07-25 DOI:10.1115/1.4063044
Jiyu Zheng, Zheng Liang, Liang Zhang, Y. Qiu, JiaWei Zhou, Zhongchao Yan
{"title":"交叉螺旋凹窝强化管热工性能数值研究","authors":"Jiyu Zheng, Zheng Liang, Liang Zhang, Y. Qiu, JiaWei Zhou, Zhongchao Yan","doi":"10.1115/1.4063044","DOIUrl":null,"url":null,"abstract":"\n A numerical investigation was performed to study the thermo-hydraulic performance in an enhanced tube with crossed helical dimples. The simulations were carried out in the Reynolds number range of 5000-30000 in crossed helical dimple tube of a period length with a constant wall temperature of 350K. The thermal enhancement, friction factor and performance evaluation criteria were the primary focus of the present work. Moreover, geometric parameters such as spiral pitch, transverse length and dimple depth were investigated for their effects on thermo-hydraulic performance. The results revealed that the shape of crossed helical dimple exerts positive effects on the heat transfer enhancement. This unique shape generated intensive transverse flow and induced a higher transverse velocity, leading to heat transfer enhancement. Therefore, the synthesized heat transfer performance was increased by 150% - 225% over that of the smooth tube. Furthermore, the heat transfer enhancement and friction factors increased with increasing dimple depth and declining spiral pitch and transverse length. Within the scope of this study, the maximum PEC = 2.25 was observed for Re = 30000, P = 30 mm, L = 11.064 mm, and H = 3 mm.","PeriodicalId":17404,"journal":{"name":"Journal of Thermal Science and Engineering Applications","volume":"21 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2023-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical study on thermo-hydraulic performance of enhanced tube with crossed helical dimples\",\"authors\":\"Jiyu Zheng, Zheng Liang, Liang Zhang, Y. Qiu, JiaWei Zhou, Zhongchao Yan\",\"doi\":\"10.1115/1.4063044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n A numerical investigation was performed to study the thermo-hydraulic performance in an enhanced tube with crossed helical dimples. The simulations were carried out in the Reynolds number range of 5000-30000 in crossed helical dimple tube of a period length with a constant wall temperature of 350K. The thermal enhancement, friction factor and performance evaluation criteria were the primary focus of the present work. Moreover, geometric parameters such as spiral pitch, transverse length and dimple depth were investigated for their effects on thermo-hydraulic performance. The results revealed that the shape of crossed helical dimple exerts positive effects on the heat transfer enhancement. This unique shape generated intensive transverse flow and induced a higher transverse velocity, leading to heat transfer enhancement. Therefore, the synthesized heat transfer performance was increased by 150% - 225% over that of the smooth tube. Furthermore, the heat transfer enhancement and friction factors increased with increasing dimple depth and declining spiral pitch and transverse length. Within the scope of this study, the maximum PEC = 2.25 was observed for Re = 30000, P = 30 mm, L = 11.064 mm, and H = 3 mm.\",\"PeriodicalId\":17404,\"journal\":{\"name\":\"Journal of Thermal Science and Engineering Applications\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Thermal Science and Engineering Applications\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4063044\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermal Science and Engineering Applications","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4063044","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

采用数值模拟方法研究了带交叉螺旋凹窝的强化管的热工性能。在雷诺数为5000 ~ 30000的周期长度、壁温为350K的交叉螺旋凹窝管中进行了模拟。热增强、摩擦系数和性能评价标准是本文研究的重点。此外,还研究了螺旋距、横向长度和凹窝深度等几何参数对热工性能的影响。结果表明,交叉螺旋凹窝的形状对强化传热有积极的影响。这种独特的形状产生了密集的横向流动,并诱导了更高的横向速度,从而增强了传热。因此,综合传热性能比光滑管提高了150% ~ 225%。换热强化系数和摩擦因数随韧窝深度的增加、螺旋节距和横向长度的减小而增大。在本研究范围内,当Re = 30000, P = 30 mm, L = 11.064 mm, H = 3 mm时,最大PEC = 2.25。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Numerical study on thermo-hydraulic performance of enhanced tube with crossed helical dimples
A numerical investigation was performed to study the thermo-hydraulic performance in an enhanced tube with crossed helical dimples. The simulations were carried out in the Reynolds number range of 5000-30000 in crossed helical dimple tube of a period length with a constant wall temperature of 350K. The thermal enhancement, friction factor and performance evaluation criteria were the primary focus of the present work. Moreover, geometric parameters such as spiral pitch, transverse length and dimple depth were investigated for their effects on thermo-hydraulic performance. The results revealed that the shape of crossed helical dimple exerts positive effects on the heat transfer enhancement. This unique shape generated intensive transverse flow and induced a higher transverse velocity, leading to heat transfer enhancement. Therefore, the synthesized heat transfer performance was increased by 150% - 225% over that of the smooth tube. Furthermore, the heat transfer enhancement and friction factors increased with increasing dimple depth and declining spiral pitch and transverse length. Within the scope of this study, the maximum PEC = 2.25 was observed for Re = 30000, P = 30 mm, L = 11.064 mm, and H = 3 mm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Thermal Science and Engineering Applications
Journal of Thermal Science and Engineering Applications THERMODYNAMICSENGINEERING, MECHANICAL -ENGINEERING, MECHANICAL
CiteScore
3.60
自引率
9.50%
发文量
120
期刊介绍: Applications in: Aerospace systems; Gas turbines; Biotechnology; Defense systems; Electronic and photonic equipment; Energy systems; Manufacturing; Refrigeration and air conditioning; Homeland security systems; Micro- and nanoscale devices; Petrochemical processing; Medical systems; Energy efficiency; Sustainability; Solar systems; Combustion systems
期刊最新文献
Improving turbine endwall overall cooling effectiveness using curtain cooling and redistributed film-hole layouts: an experimental and computational study Soft Computing Model for Inverse Prediction of Surface Heat Flux from Temperature Responses in Short-Duration Heat Transfer Experiments Aerothermal Optimization of Film Cooling Hole Locations on the Squealer Tip of an HP Turbine Blade Theoretical investigation of low global warming potential blends replacing R404A: the simple refrigeration cycle and its modifications Study on the Influence of Fan and Fan Cowl on Intake Air Parameters of Cooling Module
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1