{"title":"在一般图上使用凸松弛的带连通性约束的树形先验","authors":"Jan Stühmer, P. Schröder, D. Cremers","doi":"10.1109/ICCV.2013.290","DOIUrl":null,"url":null,"abstract":"In this work we propose a novel method to include a connectivity prior into image segmentation that is based on a binary labeling of a directed graph, in this case a geodesic shortest path tree. Specifically we make two contributions: First, we construct a geodesic shortest path tree with a distance measure that is related to the image data and the bending energy of each path in the tree. Second, we include a connectivity prior in our segmentation model, that allows to segment not only a single elongated structure, but instead a whole connected branching tree. Because both our segmentation model and the connectivity constraint are convex a global optimal solution can be found. To this end, we generalize a recent primal-dual algorithm for continuous convex optimization to an arbitrary graph structure. To validate our method we present results on data from medical imaging in angiography and retinal blood vessel segmentation.","PeriodicalId":6351,"journal":{"name":"2013 IEEE International Conference on Computer Vision","volume":"44 1","pages":"2336-2343"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"53","resultStr":"{\"title\":\"Tree Shape Priors with Connectivity Constraints Using Convex Relaxation on General Graphs\",\"authors\":\"Jan Stühmer, P. Schröder, D. Cremers\",\"doi\":\"10.1109/ICCV.2013.290\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work we propose a novel method to include a connectivity prior into image segmentation that is based on a binary labeling of a directed graph, in this case a geodesic shortest path tree. Specifically we make two contributions: First, we construct a geodesic shortest path tree with a distance measure that is related to the image data and the bending energy of each path in the tree. Second, we include a connectivity prior in our segmentation model, that allows to segment not only a single elongated structure, but instead a whole connected branching tree. Because both our segmentation model and the connectivity constraint are convex a global optimal solution can be found. To this end, we generalize a recent primal-dual algorithm for continuous convex optimization to an arbitrary graph structure. To validate our method we present results on data from medical imaging in angiography and retinal blood vessel segmentation.\",\"PeriodicalId\":6351,\"journal\":{\"name\":\"2013 IEEE International Conference on Computer Vision\",\"volume\":\"44 1\",\"pages\":\"2336-2343\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"53\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Conference on Computer Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV.2013.290\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2013.290","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Tree Shape Priors with Connectivity Constraints Using Convex Relaxation on General Graphs
In this work we propose a novel method to include a connectivity prior into image segmentation that is based on a binary labeling of a directed graph, in this case a geodesic shortest path tree. Specifically we make two contributions: First, we construct a geodesic shortest path tree with a distance measure that is related to the image data and the bending energy of each path in the tree. Second, we include a connectivity prior in our segmentation model, that allows to segment not only a single elongated structure, but instead a whole connected branching tree. Because both our segmentation model and the connectivity constraint are convex a global optimal solution can be found. To this end, we generalize a recent primal-dual algorithm for continuous convex optimization to an arbitrary graph structure. To validate our method we present results on data from medical imaging in angiography and retinal blood vessel segmentation.