针对WhatsApp消息应用程序中未发送消息的尸检移动法医工具分析

Fahdiaz Alief, Y. Suryanto, Linda Rosselina, T. Hermawan
{"title":"针对WhatsApp消息应用程序中未发送消息的尸检移动法医工具分析","authors":"Fahdiaz Alief, Y. Suryanto, Linda Rosselina, T. Hermawan","doi":"10.23919/EECSI50503.2020.9251876","DOIUrl":null,"url":null,"abstract":"This paper discusses the new feature implemented in most social media messaging applications: the unsent feature, where the sender can delete the message he sent both in the sender and the recipient devices. This new feature poses a new challenge in mobile forensic, as it could potentially delete sent messages that can be used as evidence without the means to retrieve it. This paper aims to analyze how well Autopsy open-source mobile forensics tools in extracting and identifying the deleted messages, both that are sent or received. The device used in this paper is a Redmi Xiaomi Note 4, which has its userdata block extracted using linux command, and the application we're using is WhatsApp. Autopsy will analyze the extracted image and see what information can be extracted from the unsent messages. From the result of our experiment, Autopsy is capable of obtaining substantial information, but due to how each vendor and mobile OS store files and databases differently, only WhatsApp data can be extracted from the device. And based on the WhatsApp data analysis, Autopsy is not capable of retrieving the deleted messages. However it can detect the traces of deleted data that is sent from the device. And using sqlite3 database browser, the author can find remnants of received deleted messages from the extracted files by Autopsy.","PeriodicalId":6743,"journal":{"name":"2020 7th International Conference on Electrical Engineering, Computer Sciences and Informatics (EECSI)","volume":"101 1","pages":"26-30"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Analysis of Autopsy Mobile Forensic Tools against Unsent Messages on WhatsApp Messaging Application\",\"authors\":\"Fahdiaz Alief, Y. Suryanto, Linda Rosselina, T. Hermawan\",\"doi\":\"10.23919/EECSI50503.2020.9251876\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper discusses the new feature implemented in most social media messaging applications: the unsent feature, where the sender can delete the message he sent both in the sender and the recipient devices. This new feature poses a new challenge in mobile forensic, as it could potentially delete sent messages that can be used as evidence without the means to retrieve it. This paper aims to analyze how well Autopsy open-source mobile forensics tools in extracting and identifying the deleted messages, both that are sent or received. The device used in this paper is a Redmi Xiaomi Note 4, which has its userdata block extracted using linux command, and the application we're using is WhatsApp. Autopsy will analyze the extracted image and see what information can be extracted from the unsent messages. From the result of our experiment, Autopsy is capable of obtaining substantial information, but due to how each vendor and mobile OS store files and databases differently, only WhatsApp data can be extracted from the device. And based on the WhatsApp data analysis, Autopsy is not capable of retrieving the deleted messages. However it can detect the traces of deleted data that is sent from the device. And using sqlite3 database browser, the author can find remnants of received deleted messages from the extracted files by Autopsy.\",\"PeriodicalId\":6743,\"journal\":{\"name\":\"2020 7th International Conference on Electrical Engineering, Computer Sciences and Informatics (EECSI)\",\"volume\":\"101 1\",\"pages\":\"26-30\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 7th International Conference on Electrical Engineering, Computer Sciences and Informatics (EECSI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/EECSI50503.2020.9251876\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 7th International Conference on Electrical Engineering, Computer Sciences and Informatics (EECSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/EECSI50503.2020.9251876","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文讨论了在大多数社交媒体消息应用程序中实现的新功能:unsent功能,即发送方可以在发送方和接收方设备中删除他发送的消息。这一新功能给移动取证带来了新的挑战,因为它可能会删除可以用作证据的已发送消息,而无法检索它。本文旨在分析尸检开源移动取证工具在提取和识别发送或接收的已删除消息方面的表现。本文使用的设备是红米小米Note 4,使用linux命令提取其userdata块,我们使用的应用程序是WhatsApp。尸检将分析提取的图像,看看可以从未发送的消息中提取什么信息。从我们的实验结果来看,尸检能够获得大量信息,但由于每个供应商和移动操作系统存储文件和数据库的方式不同,只能从设备中提取WhatsApp数据。根据WhatsApp的数据分析,尸检无法检索被删除的消息。但是,它可以检测从设备发送的已删除数据的痕迹。并使用sqlite3数据库浏览器,通过对提取的文件进行尸检,可以找到收到的已删除消息的残余物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Analysis of Autopsy Mobile Forensic Tools against Unsent Messages on WhatsApp Messaging Application
This paper discusses the new feature implemented in most social media messaging applications: the unsent feature, where the sender can delete the message he sent both in the sender and the recipient devices. This new feature poses a new challenge in mobile forensic, as it could potentially delete sent messages that can be used as evidence without the means to retrieve it. This paper aims to analyze how well Autopsy open-source mobile forensics tools in extracting and identifying the deleted messages, both that are sent or received. The device used in this paper is a Redmi Xiaomi Note 4, which has its userdata block extracted using linux command, and the application we're using is WhatsApp. Autopsy will analyze the extracted image and see what information can be extracted from the unsent messages. From the result of our experiment, Autopsy is capable of obtaining substantial information, but due to how each vendor and mobile OS store files and databases differently, only WhatsApp data can be extracted from the device. And based on the WhatsApp data analysis, Autopsy is not capable of retrieving the deleted messages. However it can detect the traces of deleted data that is sent from the device. And using sqlite3 database browser, the author can find remnants of received deleted messages from the extracted files by Autopsy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Aquatic Iguana: A Floating Waste Collecting Robot with IoT Based Water Monitoring System Improving the Anomaly Detection by Combining PSO Search Methods and J48 Algorithm A Wireless ECG Device with Mobile Applications for Android Features Extraction on IoT Intrusion Detection System Using Principal Components Analysis (PCA) Deep Convolutional Architecture for Block-Based Classification of Small Pulmonary Nodules
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1