{"title":"识别区分阿尔茨海默病和轻度认知障碍的兴趣区域","authors":"Helena Aidos, J. Duarte, A. Fred","doi":"10.1109/ICIP.2014.7025003","DOIUrl":null,"url":null,"abstract":"Alzheimer's disease (AD) is one of the most common types of dementia that affects elderly people, with no known cure. Early diagnosis of this disease is very important to improve patients' life quality and slow down the disease progression. Over the years, researchers have been proposing several techniques to analyze brain images, like FDG-PET, to automatically find changes in the brain activity. This paper compares regions of voxels identified by an expert with regions of voxels found automatically, in terms of corresponding classification accuracies based on three well-known classifiers. The automatic identification of regions is made by segmenting FDG-PET images, and extracting features that represent each of those regions. Experimental results show that the regions found automatically are very discriminative, outperforming results with expert's defined regions.","PeriodicalId":6856,"journal":{"name":"2014 IEEE International Conference on Image Processing (ICIP)","volume":"30 1","pages":"21-25"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Identifying regions of interest for discriminating Alzheimer's disease from mild cognitive impairment\",\"authors\":\"Helena Aidos, J. Duarte, A. Fred\",\"doi\":\"10.1109/ICIP.2014.7025003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Alzheimer's disease (AD) is one of the most common types of dementia that affects elderly people, with no known cure. Early diagnosis of this disease is very important to improve patients' life quality and slow down the disease progression. Over the years, researchers have been proposing several techniques to analyze brain images, like FDG-PET, to automatically find changes in the brain activity. This paper compares regions of voxels identified by an expert with regions of voxels found automatically, in terms of corresponding classification accuracies based on three well-known classifiers. The automatic identification of regions is made by segmenting FDG-PET images, and extracting features that represent each of those regions. Experimental results show that the regions found automatically are very discriminative, outperforming results with expert's defined regions.\",\"PeriodicalId\":6856,\"journal\":{\"name\":\"2014 IEEE International Conference on Image Processing (ICIP)\",\"volume\":\"30 1\",\"pages\":\"21-25\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Conference on Image Processing (ICIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP.2014.7025003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2014.7025003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Identifying regions of interest for discriminating Alzheimer's disease from mild cognitive impairment
Alzheimer's disease (AD) is one of the most common types of dementia that affects elderly people, with no known cure. Early diagnosis of this disease is very important to improve patients' life quality and slow down the disease progression. Over the years, researchers have been proposing several techniques to analyze brain images, like FDG-PET, to automatically find changes in the brain activity. This paper compares regions of voxels identified by an expert with regions of voxels found automatically, in terms of corresponding classification accuracies based on three well-known classifiers. The automatic identification of regions is made by segmenting FDG-PET images, and extracting features that represent each of those regions. Experimental results show that the regions found automatically are very discriminative, outperforming results with expert's defined regions.