{"title":"利用第一性原理研究Pd合金诱导有序B2 TiRu相马氏体转变的可能性","authors":"B. Ngobe, M. Phasha, IA Mwamba","doi":"10.36303/satnt.2021cosaami.39","DOIUrl":null,"url":null,"abstract":"Density functional theory (DFT) based on the first-principles technique, CASTEP, was used to explore the possibility of inducing martensitic transformation (MT) in a stable B2 TiRu alloy by systematic introduction of palladium (Pd) on the ruthenium (Ru) site. The structural, mechanical and electronic properties of pure, as well as, Pd-doped TiRu were calculated. The elastic constants obtained show that the addition of Pd seems to induce MT in the ordered TiRu, as shown by mechanical instability (C΄= C11-C12 < 0) of the B2 phase against shear deformation at 0 K. This is an indication that B2 is likely to transform to low symmetry phases such as L10/B19/B19’. Moreover, the calculated total density of states (T-DOS) also indicated that the addition of Pd shifted the Fermi level (EF) from the centre of the pseudogap of the ordered pure TiRu towards the right (anti-bonding region), rendering the resulting B2 ternary phase unstable at certain Pd compositions higher than 10 atomic percent (at.%). The predicted induced martensitic transformation is one of the key characteristics of shape memory behaviour in B2 Ti-based alloys such as NiTi, TiPd and TiPt. Further work on the possible low temperature phases resulting from B2 Ti-Ru-Pd ternary alloys is underway.","PeriodicalId":22035,"journal":{"name":"Suid-Afrikaanse Tydskrif vir Natuurwetenskap en Tegnologie","volume":"115 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"First-principles study to explore the possibility of inducing martensitic transformation in ordered B2 TiRu phase by alloying with Pd\",\"authors\":\"B. Ngobe, M. Phasha, IA Mwamba\",\"doi\":\"10.36303/satnt.2021cosaami.39\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Density functional theory (DFT) based on the first-principles technique, CASTEP, was used to explore the possibility of inducing martensitic transformation (MT) in a stable B2 TiRu alloy by systematic introduction of palladium (Pd) on the ruthenium (Ru) site. The structural, mechanical and electronic properties of pure, as well as, Pd-doped TiRu were calculated. The elastic constants obtained show that the addition of Pd seems to induce MT in the ordered TiRu, as shown by mechanical instability (C΄= C11-C12 < 0) of the B2 phase against shear deformation at 0 K. This is an indication that B2 is likely to transform to low symmetry phases such as L10/B19/B19’. Moreover, the calculated total density of states (T-DOS) also indicated that the addition of Pd shifted the Fermi level (EF) from the centre of the pseudogap of the ordered pure TiRu towards the right (anti-bonding region), rendering the resulting B2 ternary phase unstable at certain Pd compositions higher than 10 atomic percent (at.%). The predicted induced martensitic transformation is one of the key characteristics of shape memory behaviour in B2 Ti-based alloys such as NiTi, TiPd and TiPt. Further work on the possible low temperature phases resulting from B2 Ti-Ru-Pd ternary alloys is underway.\",\"PeriodicalId\":22035,\"journal\":{\"name\":\"Suid-Afrikaanse Tydskrif vir Natuurwetenskap en Tegnologie\",\"volume\":\"115 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Suid-Afrikaanse Tydskrif vir Natuurwetenskap en Tegnologie\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36303/satnt.2021cosaami.39\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Suid-Afrikaanse Tydskrif vir Natuurwetenskap en Tegnologie","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36303/satnt.2021cosaami.39","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
First-principles study to explore the possibility of inducing martensitic transformation in ordered B2 TiRu phase by alloying with Pd
Density functional theory (DFT) based on the first-principles technique, CASTEP, was used to explore the possibility of inducing martensitic transformation (MT) in a stable B2 TiRu alloy by systematic introduction of palladium (Pd) on the ruthenium (Ru) site. The structural, mechanical and electronic properties of pure, as well as, Pd-doped TiRu were calculated. The elastic constants obtained show that the addition of Pd seems to induce MT in the ordered TiRu, as shown by mechanical instability (C΄= C11-C12 < 0) of the B2 phase against shear deformation at 0 K. This is an indication that B2 is likely to transform to low symmetry phases such as L10/B19/B19’. Moreover, the calculated total density of states (T-DOS) also indicated that the addition of Pd shifted the Fermi level (EF) from the centre of the pseudogap of the ordered pure TiRu towards the right (anti-bonding region), rendering the resulting B2 ternary phase unstable at certain Pd compositions higher than 10 atomic percent (at.%). The predicted induced martensitic transformation is one of the key characteristics of shape memory behaviour in B2 Ti-based alloys such as NiTi, TiPd and TiPt. Further work on the possible low temperature phases resulting from B2 Ti-Ru-Pd ternary alloys is underway.