热环境视角下的太阳能辅助三联发电系统性能评价

M. Sharma, O. Singh, A. Shukla
{"title":"热环境视角下的太阳能辅助三联发电系统性能评价","authors":"M. Sharma, O. Singh, A. Shukla","doi":"10.13052/dgaej2156-3306.3813","DOIUrl":null,"url":null,"abstract":"Nowadays, the trigeneration systems are proving more promising than a combined cycle system. In terms of efficiency and reliability, these systems meet the typical requirements of cooling heating power in various applications. This work investigated the thermodynamic and environmental characteristics of a solar-based tri-generation system. The studied system consists of gas turbine and steam turbine modules along with heating and cooling provisions as per demand. The integrated system using parabolic trough collectors and also uses steam injected gas turbines for performance improvement. The overall performance of the proposed work is compared with and without a steam injection. The effect of integration of the solar cycle and steam injection for the trigeneration system is assessed. Further, carbon footprint rejected to the environment is also estimated. It is observed that the work output and trigeneration efficiency improved, and the carbon footprint gets reduced in the range varying between 10–40% for the cases studied.","PeriodicalId":11205,"journal":{"name":"Distributed Generation & Alternative Energy Journal","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Performance Evaluation of Solar-assisted Trigeneration System in Thermo-environmental Perspective\",\"authors\":\"M. Sharma, O. Singh, A. Shukla\",\"doi\":\"10.13052/dgaej2156-3306.3813\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nowadays, the trigeneration systems are proving more promising than a combined cycle system. In terms of efficiency and reliability, these systems meet the typical requirements of cooling heating power in various applications. This work investigated the thermodynamic and environmental characteristics of a solar-based tri-generation system. The studied system consists of gas turbine and steam turbine modules along with heating and cooling provisions as per demand. The integrated system using parabolic trough collectors and also uses steam injected gas turbines for performance improvement. The overall performance of the proposed work is compared with and without a steam injection. The effect of integration of the solar cycle and steam injection for the trigeneration system is assessed. Further, carbon footprint rejected to the environment is also estimated. It is observed that the work output and trigeneration efficiency improved, and the carbon footprint gets reduced in the range varying between 10–40% for the cases studied.\",\"PeriodicalId\":11205,\"journal\":{\"name\":\"Distributed Generation & Alternative Energy Journal\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Distributed Generation & Alternative Energy Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13052/dgaej2156-3306.3813\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Distributed Generation & Alternative Energy Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13052/dgaej2156-3306.3813","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

如今,三联发电系统被证明比联合循环系统更有前途。在效率和可靠性方面,这些系统满足各种应用中对冷热电源的典型要求。本文研究了太阳能三联发电系统的热力学和环境特性。所研究的系统由燃气轮机和蒸汽轮机模块以及根据需求的加热和冷却装置组成。集成系统使用抛物线槽集热器,也使用蒸汽注入燃气轮机来提高性能。将所建议的工作在注入蒸汽和不注入蒸汽的情况下的总体性能进行了比较。评价了太阳能循环与注汽一体化对三联产系统的影响。此外,还估计了拒绝到环境中的碳足迹。结果表明,在上述案例中,系统的功输出和发电效率均有所提高,碳足迹减少了10-40%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Performance Evaluation of Solar-assisted Trigeneration System in Thermo-environmental Perspective
Nowadays, the trigeneration systems are proving more promising than a combined cycle system. In terms of efficiency and reliability, these systems meet the typical requirements of cooling heating power in various applications. This work investigated the thermodynamic and environmental characteristics of a solar-based tri-generation system. The studied system consists of gas turbine and steam turbine modules along with heating and cooling provisions as per demand. The integrated system using parabolic trough collectors and also uses steam injected gas turbines for performance improvement. The overall performance of the proposed work is compared with and without a steam injection. The effect of integration of the solar cycle and steam injection for the trigeneration system is assessed. Further, carbon footprint rejected to the environment is also estimated. It is observed that the work output and trigeneration efficiency improved, and the carbon footprint gets reduced in the range varying between 10–40% for the cases studied.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analysis of Power Grid User Behavior Based on Data Mining Algorithms – System Design and Implementation Load Frequency Control Strategy of Interconnected Power System Based on Tube DMPC KWH Cost Analysis of Energy Storage Power Station Based on Changing Trend of Battery Cost Study on PV Power Prediction Based on VMD-IGWO-LSTM Research on Environmental Performance and Measurement of Smart City Power Supply Based on Non Radial Network DEA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1