{"title":"挤出宇宙交响乐","authors":"Mengyao Wang, Fan Zhang","doi":"10.1007/s43673-023-00076-5","DOIUrl":null,"url":null,"abstract":"<div><p>We briefly review the status of applying quantum squeezing to aid the search for gravitational waves with km-scale laser interferometers operating in the audio frequency band. The target audience is quantum optics professionals who are interested in an easily accessible introduction to the gravitational wave detector, both as an application of squeezing and as a platform for developing other quantum techniques.</p></div>","PeriodicalId":100007,"journal":{"name":"AAPPS Bulletin","volume":"33 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s43673-023-00076-5.pdf","citationCount":"0","resultStr":"{\"title\":\"Squeezing for cosmic symphony\",\"authors\":\"Mengyao Wang, Fan Zhang\",\"doi\":\"10.1007/s43673-023-00076-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We briefly review the status of applying quantum squeezing to aid the search for gravitational waves with km-scale laser interferometers operating in the audio frequency band. The target audience is quantum optics professionals who are interested in an easily accessible introduction to the gravitational wave detector, both as an application of squeezing and as a platform for developing other quantum techniques.</p></div>\",\"PeriodicalId\":100007,\"journal\":{\"name\":\"AAPPS Bulletin\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s43673-023-00076-5.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AAPPS Bulletin\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s43673-023-00076-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AAPPS Bulletin","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s43673-023-00076-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We briefly review the status of applying quantum squeezing to aid the search for gravitational waves with km-scale laser interferometers operating in the audio frequency band. The target audience is quantum optics professionals who are interested in an easily accessible introduction to the gravitational wave detector, both as an application of squeezing and as a platform for developing other quantum techniques.