低秩相位检索

Seyedehsara Nayer, Namrata Vaswani, Yonina C. Eldar
{"title":"低秩相位检索","authors":"Seyedehsara Nayer, Namrata Vaswani, Yonina C. Eldar","doi":"10.1109/ICASSP.2017.7952997","DOIUrl":null,"url":null,"abstract":"We study the problem of recovering a low-rank matrix, X, from phaseless measurements of random linear projections of its columns. We develop a novel solution approach, called AltMinTrunc, that consists of a two-step truncated spectral initialization step, followed by a three-step alternating minimization algorithm. We obtain sample complexity bounds for the AltMinTrunc initialization to provide a good approximation of the true X. When the rank of X is low enough, these are significantly smaller than what existing single vector phase retrieval algorithms need. Via extensive experiments, we demonstrate the same for the entire algorithm.","PeriodicalId":6443,"journal":{"name":"2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Low rank phase retrieval\",\"authors\":\"Seyedehsara Nayer, Namrata Vaswani, Yonina C. Eldar\",\"doi\":\"10.1109/ICASSP.2017.7952997\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the problem of recovering a low-rank matrix, X, from phaseless measurements of random linear projections of its columns. We develop a novel solution approach, called AltMinTrunc, that consists of a two-step truncated spectral initialization step, followed by a three-step alternating minimization algorithm. We obtain sample complexity bounds for the AltMinTrunc initialization to provide a good approximation of the true X. When the rank of X is low enough, these are significantly smaller than what existing single vector phase retrieval algorithms need. Via extensive experiments, we demonstrate the same for the entire algorithm.\",\"PeriodicalId\":6443,\"journal\":{\"name\":\"2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2017.7952997\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2017.7952997","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们研究了一个低秩矩阵X从其列的随机线性投影的无相测量中恢复的问题。我们开发了一种新的解决方法,称为AltMinTrunc,它包括一个两步截断的频谱初始化步骤,然后是一个三步交替最小化算法。我们获得了AltMinTrunc初始化的样本复杂度边界,以提供真实X的良好近似值。当X的秩足够低时,这些边界明显小于现有的单向量相位检索算法所需的复杂度。通过大量的实验,我们证明了整个算法是相同的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Low rank phase retrieval
We study the problem of recovering a low-rank matrix, X, from phaseless measurements of random linear projections of its columns. We develop a novel solution approach, called AltMinTrunc, that consists of a two-step truncated spectral initialization step, followed by a three-step alternating minimization algorithm. We obtain sample complexity bounds for the AltMinTrunc initialization to provide a good approximation of the true X. When the rank of X is low enough, these are significantly smaller than what existing single vector phase retrieval algorithms need. Via extensive experiments, we demonstrate the same for the entire algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Scalable Multilevel Quantization for Distributed Detection Linear Model-Based Intra Prediction in VVC Test Model Practical Concentric Open Sphere Cardioid Microphone Array Design for Higher Order Sound Field Capture Embedding Physical Augmentation and Wavelet Scattering Transform to Generative Adversarial Networks for Audio Classification with Limited Training Resources Improving ASR Robustness to Perturbed Speech Using Cycle-consistent Generative Adversarial Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1