开发人员如何修复问题并偿还Apache生态系统中的技术债务?

Georgios Digkas, M. Lungu, P. Avgeriou, A. Chatzigeorgiou, Apostolos Ampatzoglou
{"title":"开发人员如何修复问题并偿还Apache生态系统中的技术债务?","authors":"Georgios Digkas, M. Lungu, P. Avgeriou, A. Chatzigeorgiou, Apostolos Ampatzoglou","doi":"10.1109/SANER.2018.8330205","DOIUrl":null,"url":null,"abstract":"During software evolution technical debt (TD) follows a constant ebb and flow, being incurred and paid back, sometimes in the same day and sometimes ten years later. There have been several studies in the literature investigating how technical debt in source code accumulates during time and the consequences of this accumulation for software maintenance. However, to the best of our knowledge there are no large scale studies that focus on the types of issues that are fixed and the amount of TD that is paid back during software evolution. In this paper we present the results of a case study, in which we analyzed the evolution of fifty-seven Java open-source software projects by the Apache Software Foundation at the temporal granularity level of weekly snapshots. In particular, we focus on the amount of technical debt that is paid back and the types of issues that are fixed. The findings reveal that a small subset of all issue types is responsible for the largest percentage of TD repayment and thus, targeting particular violations the development team can achieve higher benefits.","PeriodicalId":6602,"journal":{"name":"2018 IEEE 25th International Conference on Software Analysis, Evolution and Reengineering (SANER)","volume":"91 1","pages":"153-163"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"58","resultStr":"{\"title\":\"How do developers fix issues and pay back technical debt in the Apache ecosystem?\",\"authors\":\"Georgios Digkas, M. Lungu, P. Avgeriou, A. Chatzigeorgiou, Apostolos Ampatzoglou\",\"doi\":\"10.1109/SANER.2018.8330205\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"During software evolution technical debt (TD) follows a constant ebb and flow, being incurred and paid back, sometimes in the same day and sometimes ten years later. There have been several studies in the literature investigating how technical debt in source code accumulates during time and the consequences of this accumulation for software maintenance. However, to the best of our knowledge there are no large scale studies that focus on the types of issues that are fixed and the amount of TD that is paid back during software evolution. In this paper we present the results of a case study, in which we analyzed the evolution of fifty-seven Java open-source software projects by the Apache Software Foundation at the temporal granularity level of weekly snapshots. In particular, we focus on the amount of technical debt that is paid back and the types of issues that are fixed. The findings reveal that a small subset of all issue types is responsible for the largest percentage of TD repayment and thus, targeting particular violations the development team can achieve higher benefits.\",\"PeriodicalId\":6602,\"journal\":{\"name\":\"2018 IEEE 25th International Conference on Software Analysis, Evolution and Reengineering (SANER)\",\"volume\":\"91 1\",\"pages\":\"153-163\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"58\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 25th International Conference on Software Analysis, Evolution and Reengineering (SANER)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SANER.2018.8330205\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 25th International Conference on Software Analysis, Evolution and Reengineering (SANER)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SANER.2018.8330205","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 58

摘要

在软件发展过程中,技术债务(TD)遵循一个恒定的起起落落,产生和偿还,有时在同一天,有时在十年后。文献中已经有一些研究调查了源代码中的技术债务是如何随着时间的推移而积累的,以及这种积累对软件维护的影响。然而,据我们所知,目前还没有大规模的研究集中在固定的问题类型和软件开发过程中偿还的TD数量上。在本文中,我们展示了一个案例研究的结果,在这个案例中,我们分析了Apache软件基金会在每周快照的时间粒度级别上的57个Java开源软件项目的演变。特别地,我们关注已偿还的技术债务的数量和已修复的问题类型。研究结果表明,所有问题类型中的一小部分负责最大比例的TD偿还,因此,针对特定的违规行为,开发团队可以获得更高的收益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
How do developers fix issues and pay back technical debt in the Apache ecosystem?
During software evolution technical debt (TD) follows a constant ebb and flow, being incurred and paid back, sometimes in the same day and sometimes ten years later. There have been several studies in the literature investigating how technical debt in source code accumulates during time and the consequences of this accumulation for software maintenance. However, to the best of our knowledge there are no large scale studies that focus on the types of issues that are fixed and the amount of TD that is paid back during software evolution. In this paper we present the results of a case study, in which we analyzed the evolution of fifty-seven Java open-source software projects by the Apache Software Foundation at the temporal granularity level of weekly snapshots. In particular, we focus on the amount of technical debt that is paid back and the types of issues that are fixed. The findings reveal that a small subset of all issue types is responsible for the largest percentage of TD repayment and thus, targeting particular violations the development team can achieve higher benefits.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Exploring the integration of user feedback in automated testing of Android applications The Statechart Workbench: Enabling scalable software event log analysis using process mining Detecting code smells using machine learning techniques: Are we there yet? Classifying stack overflow posts on API issues Re-evaluating method-level bug prediction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1