甘氨酸辅助CoFe2O4纳米颗粒溶胶-凝胶合成及结构分析

R. Parlikar, R. Chilwar, A. P. Keche, R. Dudhal, A. V. Raut, K. M. Jadhav
{"title":"甘氨酸辅助CoFe2O4纳米颗粒溶胶-凝胶合成及结构分析","authors":"R. Parlikar, R. Chilwar, A. P. Keche, R. Dudhal, A. V. Raut, K. M. Jadhav","doi":"10.1063/5.0061127","DOIUrl":null,"url":null,"abstract":"In this work, we tried to investigate the structural properties of cobalt ferrite (CoFe2O4) nanoparticles synthesized via the sol-gel auto-combustion method. The synthesis of cobalt ferrite was carried out by glycine assisted auto-ignition in the sol-gel method. The preparation conditions and sintering temperature during the synthesis creates additional phases in the respective materials, which may play an important role in several applications because of their controlled physical properties. Therefore, CoFe2O4 nanoparticles were considered as a good candidate for high-frequency applications. The X-ray diffraction study of CoFe2O4 nanoparticles was carried out for phase purity. XRD pattern revealed the presence of Bragg’s reflections which belong to the cubic spinel structure. The Miller indices (hkl) were identified using the standard method and the FWHM of the most intense peak (311) was used for the calculation of crystallite size. The crystallite size (t) was estimated using Debye-Scherrer’s formula and found to be 32.16 nm which is following our expectations.","PeriodicalId":18837,"journal":{"name":"NATIONAL CONFERENCE ON PHYSICS AND CHEMISTRY OF MATERIALS: NCPCM2020","volume":"92 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Glycine assisted sol-gel synthesis and structural analysis of CoFe2O4 nanoparticles\",\"authors\":\"R. Parlikar, R. Chilwar, A. P. Keche, R. Dudhal, A. V. Raut, K. M. Jadhav\",\"doi\":\"10.1063/5.0061127\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we tried to investigate the structural properties of cobalt ferrite (CoFe2O4) nanoparticles synthesized via the sol-gel auto-combustion method. The synthesis of cobalt ferrite was carried out by glycine assisted auto-ignition in the sol-gel method. The preparation conditions and sintering temperature during the synthesis creates additional phases in the respective materials, which may play an important role in several applications because of their controlled physical properties. Therefore, CoFe2O4 nanoparticles were considered as a good candidate for high-frequency applications. The X-ray diffraction study of CoFe2O4 nanoparticles was carried out for phase purity. XRD pattern revealed the presence of Bragg’s reflections which belong to the cubic spinel structure. The Miller indices (hkl) were identified using the standard method and the FWHM of the most intense peak (311) was used for the calculation of crystallite size. The crystallite size (t) was estimated using Debye-Scherrer’s formula and found to be 32.16 nm which is following our expectations.\",\"PeriodicalId\":18837,\"journal\":{\"name\":\"NATIONAL CONFERENCE ON PHYSICS AND CHEMISTRY OF MATERIALS: NCPCM2020\",\"volume\":\"92 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NATIONAL CONFERENCE ON PHYSICS AND CHEMISTRY OF MATERIALS: NCPCM2020\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0061127\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NATIONAL CONFERENCE ON PHYSICS AND CHEMISTRY OF MATERIALS: NCPCM2020","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0061127","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们试图研究通过溶胶-凝胶自燃烧法合成的钴铁氧体(CoFe2O4)纳米颗粒的结构性质。采用溶胶-凝胶法,采用甘氨酸辅助自燃法合成钴铁氧体。合成过程中的制备条件和烧结温度在各自的材料中产生额外的相,由于它们的物理性质受控,这些相可能在几种应用中发挥重要作用。因此,CoFe2O4纳米粒子被认为是高频应用的良好候选者。对CoFe2O4纳米颗粒进行了相纯度的x射线衍射研究。XRD谱图显示存在布拉格反射,属于立方尖晶石结构。采用标准方法鉴定米勒指数(hkl),采用最强峰(311)的频宽m计算晶体尺寸。根据Debye-Scherrer公式估计晶体尺寸(t)为32.16 nm,符合我们的预期。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Glycine assisted sol-gel synthesis and structural analysis of CoFe2O4 nanoparticles
In this work, we tried to investigate the structural properties of cobalt ferrite (CoFe2O4) nanoparticles synthesized via the sol-gel auto-combustion method. The synthesis of cobalt ferrite was carried out by glycine assisted auto-ignition in the sol-gel method. The preparation conditions and sintering temperature during the synthesis creates additional phases in the respective materials, which may play an important role in several applications because of their controlled physical properties. Therefore, CoFe2O4 nanoparticles were considered as a good candidate for high-frequency applications. The X-ray diffraction study of CoFe2O4 nanoparticles was carried out for phase purity. XRD pattern revealed the presence of Bragg’s reflections which belong to the cubic spinel structure. The Miller indices (hkl) were identified using the standard method and the FWHM of the most intense peak (311) was used for the calculation of crystallite size. The crystallite size (t) was estimated using Debye-Scherrer’s formula and found to be 32.16 nm which is following our expectations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Effect of tungsten doping on the properties of PZN-PT single crystals Relation between mechanical and tribological properties of plasma nitrided and TiCrN coated YXR-7 tool steel Investigation on chemical instability and optical absorption of ion bombarded Si surfaces Dielectric properties and AC conductivity of green synthesized nano La2O3/La(OH)3 Polypropylene/glass fiber/ethylene propylene diene ternary composites with improved thermoforming properties for orthotic aids
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1