利用纳米间隙稳定微流控芯片对单孢发芽链霉菌的整个生命周期进行观察。

IF 4.5 Q1 MICROBIOLOGY mLife Pub Date : 2022-09-24 eCollection Date: 2022-09-01 DOI:10.1002/mlf2.12039
Dongwei Chen, Mengyue Nie, Wei Tang, Yuwei Zhang, Jian Wang, Ying Lan, Yihua Chen, Wenbin Du
{"title":"利用纳米间隙稳定微流控芯片对单孢发芽链霉菌的整个生命周期进行观察。","authors":"Dongwei Chen, Mengyue Nie, Wei Tang, Yuwei Zhang, Jian Wang, Ying Lan, Yihua Chen, Wenbin Du","doi":"10.1002/mlf2.12039","DOIUrl":null,"url":null,"abstract":"<p><p><i>Streptomyces</i> is a model bacterium to study multicellular differentiation and the major reservoir for antibiotics discovery. However, the cellular-level lifecycle of <i>Streptomyces</i> has not been well studied due to its complexity and lack of research tools that can mimic their natural conditions. In this study, we developed a simple microfluidic chip for the cultivation and observation of the entire lifecycle of <i>Streptomyces</i> development from the single-cell perspective. The chip consists of channels for loading samples and supplying nutrients, microwell arrays for the seeding and growth of single spores, and air chambers beside the microwells that facilitate the development of aerial hyphae and spores. A unique feature of this chip is that each microwell is surrounded by a 1.5 µm nanogap connected to an air chamber, which provides a stabilized water-air interface. We used this chip to observe the lifecycle development of <i>Streptomyces coelicolor</i> and <i>Streptomyces griseus</i> germinated from single spores, which revealed differentiation of aerial hyphae with progeny spores at micron-scale water-air interfaces and air chambers. Finally, we demonstrated the applicability of this chip in phenotypic assays by showing that the microbial hormone A-Factor is involved in the regulatory pathways of aerial hyphae and spore formation. The microfluidic chip could become a robust tool for studying multicellular differentiation, single-spore heterogeneity, and secondary metabolism of single-spore germinated <i>Streptomyces</i>.</p>","PeriodicalId":94145,"journal":{"name":"mLife","volume":null,"pages":null},"PeriodicalIF":4.5000,"publicationDate":"2022-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10989842/pdf/","citationCount":"0","resultStr":"{\"title\":\"Whole lifecycle observation of single-spore germinated <i>Streptomyces</i> using a nanogap-stabilized microfluidic chip.\",\"authors\":\"Dongwei Chen, Mengyue Nie, Wei Tang, Yuwei Zhang, Jian Wang, Ying Lan, Yihua Chen, Wenbin Du\",\"doi\":\"10.1002/mlf2.12039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>Streptomyces</i> is a model bacterium to study multicellular differentiation and the major reservoir for antibiotics discovery. However, the cellular-level lifecycle of <i>Streptomyces</i> has not been well studied due to its complexity and lack of research tools that can mimic their natural conditions. In this study, we developed a simple microfluidic chip for the cultivation and observation of the entire lifecycle of <i>Streptomyces</i> development from the single-cell perspective. The chip consists of channels for loading samples and supplying nutrients, microwell arrays for the seeding and growth of single spores, and air chambers beside the microwells that facilitate the development of aerial hyphae and spores. A unique feature of this chip is that each microwell is surrounded by a 1.5 µm nanogap connected to an air chamber, which provides a stabilized water-air interface. We used this chip to observe the lifecycle development of <i>Streptomyces coelicolor</i> and <i>Streptomyces griseus</i> germinated from single spores, which revealed differentiation of aerial hyphae with progeny spores at micron-scale water-air interfaces and air chambers. Finally, we demonstrated the applicability of this chip in phenotypic assays by showing that the microbial hormone A-Factor is involved in the regulatory pathways of aerial hyphae and spore formation. The microfluidic chip could become a robust tool for studying multicellular differentiation, single-spore heterogeneity, and secondary metabolism of single-spore germinated <i>Streptomyces</i>.</p>\",\"PeriodicalId\":94145,\"journal\":{\"name\":\"mLife\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2022-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10989842/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"mLife\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/mlf2.12039\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/9/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"mLife","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/mlf2.12039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/9/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

链霉菌是研究多细胞分化的模式菌,也是发现抗生素的主要资源库。然而,由于链霉菌细胞级生命周期的复杂性以及缺乏可模拟其自然条件的研究工具,对其的研究还不够深入。在这项研究中,我们开发了一种简单的微流控芯片,用于从单细胞角度培养和观察链霉菌发育的整个生命周期。该芯片由用于装载样品和提供营养物质的通道、用于单孢子播种和生长的微孔阵列以及微孔旁用于促进气生菌丝和孢子发育的气室组成。该芯片的一个独特之处是每个微孔周围都有一个 1.5 微米的纳米间隙与气室相连,从而提供了一个稳定的水气界面。我们利用该芯片观察了从单孢子发芽的 Streptomyces coelicolor 和 Streptomyces griseus 的生命周期发育过程,结果显示,在微米级的水气界面和气室中,气生菌丝与原生孢子发生了分化。最后,我们证明了这一芯片在表型测定中的适用性,表明微生物激素 A-因子参与了气生菌丝和孢子形成的调控途径。微流控芯片可以成为研究多细胞分化、单孢子异质性和单孢子发芽链霉菌次生代谢的有力工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Whole lifecycle observation of single-spore germinated Streptomyces using a nanogap-stabilized microfluidic chip.

Streptomyces is a model bacterium to study multicellular differentiation and the major reservoir for antibiotics discovery. However, the cellular-level lifecycle of Streptomyces has not been well studied due to its complexity and lack of research tools that can mimic their natural conditions. In this study, we developed a simple microfluidic chip for the cultivation and observation of the entire lifecycle of Streptomyces development from the single-cell perspective. The chip consists of channels for loading samples and supplying nutrients, microwell arrays for the seeding and growth of single spores, and air chambers beside the microwells that facilitate the development of aerial hyphae and spores. A unique feature of this chip is that each microwell is surrounded by a 1.5 µm nanogap connected to an air chamber, which provides a stabilized water-air interface. We used this chip to observe the lifecycle development of Streptomyces coelicolor and Streptomyces griseus germinated from single spores, which revealed differentiation of aerial hyphae with progeny spores at micron-scale water-air interfaces and air chambers. Finally, we demonstrated the applicability of this chip in phenotypic assays by showing that the microbial hormone A-Factor is involved in the regulatory pathways of aerial hyphae and spore formation. The microfluidic chip could become a robust tool for studying multicellular differentiation, single-spore heterogeneity, and secondary metabolism of single-spore germinated Streptomyces.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
0.00%
发文量
0
期刊最新文献
Staphylococcus aureus SOS response: Activation, impact, and drug targets. EmbB and EmbC regulate the sensitivity of Mycobacterium abscessus to echinomycin. Metabolic activities of marine ammonia-oxidizing archaea orchestrated by quorum sensing. Zinc finger 4 negatively controls the transcriptional activator Fzf1 in Saccharomyces cerevisiae. Efficient, compact, and versatile: Type I-F2 CRISPR-Cas system.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1