中楚科奇地区超古典纪岩浆活动的同位素年龄与古地球动力学位置

IF 0.8 Q4 GEOCHEMISTRY & GEOPHYSICS Geodynamics & Tectonophysics Pub Date : 2021-01-01 DOI:10.5800/gt-2021-12-1-0513
S. Efremov, A. Travin
{"title":"中楚科奇地区超古典纪岩浆活动的同位素年龄与古地球动力学位置","authors":"S. Efremov, A. Travin","doi":"10.5800/gt-2021-12-1-0513","DOIUrl":null,"url":null,"abstract":"The 40Ar/39Ar dating of ultrapotassic rocks from Central Chukotka shows that these rocks are Early Cretaceous, and yields a narrow range of age variations (109 to 107 Ma), which correlates fairly well with the range of age variations of granitoids typical of the study area (117–105 Ma). There are thus grounds to suggest that the ultrapotassic magmas and granitoids resulted from the same geological process that can be identified from the material characteristics of the ultrapotassic magmas.In the modern concepts of the regional geological development, the formation of the granitoid and ultrapotassic magmas can be related to the continental lithosphere extension due to the collision of Eurasian plate and the Chukotka – Arctic Alaska continental block.Using modern genetic models based on the interpretations of the material characteristics of ultrapotassic magmas, it is possible to limit the number of genetic hypotheses and to relate the continental lithosphere extension to the processes that took place in the upper mantle of the study area.","PeriodicalId":44925,"journal":{"name":"Geodynamics & Tectonophysics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Isotopic age and paleogeodynamic position of ultrapotassic magmatism of Central Chukotka\",\"authors\":\"S. Efremov, A. Travin\",\"doi\":\"10.5800/gt-2021-12-1-0513\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The 40Ar/39Ar dating of ultrapotassic rocks from Central Chukotka shows that these rocks are Early Cretaceous, and yields a narrow range of age variations (109 to 107 Ma), which correlates fairly well with the range of age variations of granitoids typical of the study area (117–105 Ma). There are thus grounds to suggest that the ultrapotassic magmas and granitoids resulted from the same geological process that can be identified from the material characteristics of the ultrapotassic magmas.In the modern concepts of the regional geological development, the formation of the granitoid and ultrapotassic magmas can be related to the continental lithosphere extension due to the collision of Eurasian plate and the Chukotka – Arctic Alaska continental block.Using modern genetic models based on the interpretations of the material characteristics of ultrapotassic magmas, it is possible to limit the number of genetic hypotheses and to relate the continental lithosphere extension to the processes that took place in the upper mantle of the study area.\",\"PeriodicalId\":44925,\"journal\":{\"name\":\"Geodynamics & Tectonophysics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geodynamics & Tectonophysics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5800/gt-2021-12-1-0513\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geodynamics & Tectonophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5800/gt-2021-12-1-0513","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 1

摘要

Chukotka中部超纯叠系岩石的40Ar/39Ar定年表明,这些岩石属于早白垩世,年龄变化范围窄(109 ~ 107 Ma),与研究区典型花岗岩类的年龄变化范围(117 ~ 105 Ma)具有较好的相关性。因此,我们有理由认为,超近叠世岩浆和花岗岩类是同一地质过程的产物,这可以从超近叠世岩浆的物质特征上加以识别。在现代区域地质发育的概念中,花岗质岩浆和超古生代岩浆的形成可与欧亚板块与楚科奇-北极阿拉斯加大陆块体碰撞引起的大陆岩石圈伸展有关。利用基于超古典纪岩浆物质特征解释的现代成因模型,可以限制成因假说的数量,并将大陆岩石圈伸展与研究区上地幔发生的过程联系起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Isotopic age and paleogeodynamic position of ultrapotassic magmatism of Central Chukotka
The 40Ar/39Ar dating of ultrapotassic rocks from Central Chukotka shows that these rocks are Early Cretaceous, and yields a narrow range of age variations (109 to 107 Ma), which correlates fairly well with the range of age variations of granitoids typical of the study area (117–105 Ma). There are thus grounds to suggest that the ultrapotassic magmas and granitoids resulted from the same geological process that can be identified from the material characteristics of the ultrapotassic magmas.In the modern concepts of the regional geological development, the formation of the granitoid and ultrapotassic magmas can be related to the continental lithosphere extension due to the collision of Eurasian plate and the Chukotka – Arctic Alaska continental block.Using modern genetic models based on the interpretations of the material characteristics of ultrapotassic magmas, it is possible to limit the number of genetic hypotheses and to relate the continental lithosphere extension to the processes that took place in the upper mantle of the study area.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geodynamics & Tectonophysics
Geodynamics & Tectonophysics GEOCHEMISTRY & GEOPHYSICS-
CiteScore
1.20
自引率
14.30%
发文量
95
审稿时长
24 weeks
期刊介绍: The purpose of the journal is facilitating awareness of the international scientific community of new data on geodynamics of continental lithosphere in a wide range of geolchronological data, as well as tectonophysics as an integral part of geodynamics, in which physico-mathematical and structural-geological concepts are applied to deal with topical problems of the evolution of structures and processes taking place simultaneously in the lithosphere. Complex geological and geophysical studies of the Earth tectonosphere have been significantly enhanced in the current decade across the world. As a result, a large number of publications are developed based on thorough analyses of paleo- and modern geodynamic processes with reference to results of properly substantiated physical experiments, field data and tectonophysical calculations. Comprehensive research of that type, followed by consolidation and generalization of research results and conclusions, conforms to the start-of-the-art of the Earth’s sciences.
期刊最新文献
AMBIENT SEISMIC NOISE VARIATIONS BEFORE EARTHQUAKES IN THE BAIKAL RIFT SYSTEM FIRST DETRITAL ZIRCON GEOCHRONOLOGY DATA FOR CLASTIC ROCKS OF THE EAST SAKHALIN ACCRETIONARY TERRANE 8787Sr/86Sr ISOTOPE RATIOS IN THE RIVER WATERS OF THE SOUTHERN URALS SPECIATION FEATURES OF GOLD IN ORES AND MINERALS OF THE NATALKINSKOE DEPOSIT (NORTH-EAST RUSSIA) GPR surveys and RPA aerial photography using in conducting geocryological studies on the Oka plateau in the Eastern Sayan ridge
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1