{"title":"基于神经网络-遗传算法的深水处理泵设备整体效能评估与预测","authors":"Soud Al-Toubi","doi":"10.24191/jmeche.v20i2.22063","DOIUrl":null,"url":null,"abstract":"This study proposes the Artificial Neural Network with a Genetic Algorithm analysis approach to investigate the Overall Equipment Effectiveness of the deep-water disposal pump system. The ANN-GA model was developed based on six big losses over eighteen successive months of the operating period to evaluate the current and future performance of the DWD system. 70% of the data was used for training and 15% for each data validation and testing. The DWD system faces frequent failure issues, significantly impacting its performance, so it is important to reveal the main causes of these failures to manage them properly. ANN-GA is applied to make a linear trend prediction and assesses the confidence and accuracy of the results obtained. Analysis of ANOVA (variance) was adopted as an additional decision tool for detecting the variation of process parameters. ANN-GA results showed that the current OEE value ranges between 29% to 54%, whereas the predicted future system performance average is approximately 49%, which reflects the poor performance of the DWD pump system in the future compared to the world- class target (85%). ANN-GA analysis results indicated were very close and matched with the actual values. The model framework and analysis presented are used to develop a decision support tool for managers for early intervention to minimize system deterioration, reduce maintenance costs and increase productivity. Furthermore, it allows early identifying the potential area ofimprovement to support continuous improvement (CI) objectives by identifying and eliminating unnecessary maintenance activities. The proposed model framework uses the ANN approach to identify the current state and predict the future of the system performance to ensure confidence in the results. The contribution of the paper will be helpful for experts like managers, reliability engineers, and maintenance engineers to identify the state of the system's performance in advance.","PeriodicalId":16166,"journal":{"name":"Journal of Mechanical Engineering and Sciences","volume":"19 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluating and Predicting Overall Equipment Effectiveness for Deep Water Disposal Pump using ANN- GA Analysis Approach\",\"authors\":\"Soud Al-Toubi\",\"doi\":\"10.24191/jmeche.v20i2.22063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study proposes the Artificial Neural Network with a Genetic Algorithm analysis approach to investigate the Overall Equipment Effectiveness of the deep-water disposal pump system. The ANN-GA model was developed based on six big losses over eighteen successive months of the operating period to evaluate the current and future performance of the DWD system. 70% of the data was used for training and 15% for each data validation and testing. The DWD system faces frequent failure issues, significantly impacting its performance, so it is important to reveal the main causes of these failures to manage them properly. ANN-GA is applied to make a linear trend prediction and assesses the confidence and accuracy of the results obtained. Analysis of ANOVA (variance) was adopted as an additional decision tool for detecting the variation of process parameters. ANN-GA results showed that the current OEE value ranges between 29% to 54%, whereas the predicted future system performance average is approximately 49%, which reflects the poor performance of the DWD pump system in the future compared to the world- class target (85%). ANN-GA analysis results indicated were very close and matched with the actual values. The model framework and analysis presented are used to develop a decision support tool for managers for early intervention to minimize system deterioration, reduce maintenance costs and increase productivity. Furthermore, it allows early identifying the potential area ofimprovement to support continuous improvement (CI) objectives by identifying and eliminating unnecessary maintenance activities. The proposed model framework uses the ANN approach to identify the current state and predict the future of the system performance to ensure confidence in the results. The contribution of the paper will be helpful for experts like managers, reliability engineers, and maintenance engineers to identify the state of the system's performance in advance.\",\"PeriodicalId\":16166,\"journal\":{\"name\":\"Journal of Mechanical Engineering and Sciences\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mechanical Engineering and Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24191/jmeche.v20i2.22063\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mechanical Engineering and Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24191/jmeche.v20i2.22063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Evaluating and Predicting Overall Equipment Effectiveness for Deep Water Disposal Pump using ANN- GA Analysis Approach
This study proposes the Artificial Neural Network with a Genetic Algorithm analysis approach to investigate the Overall Equipment Effectiveness of the deep-water disposal pump system. The ANN-GA model was developed based on six big losses over eighteen successive months of the operating period to evaluate the current and future performance of the DWD system. 70% of the data was used for training and 15% for each data validation and testing. The DWD system faces frequent failure issues, significantly impacting its performance, so it is important to reveal the main causes of these failures to manage them properly. ANN-GA is applied to make a linear trend prediction and assesses the confidence and accuracy of the results obtained. Analysis of ANOVA (variance) was adopted as an additional decision tool for detecting the variation of process parameters. ANN-GA results showed that the current OEE value ranges between 29% to 54%, whereas the predicted future system performance average is approximately 49%, which reflects the poor performance of the DWD pump system in the future compared to the world- class target (85%). ANN-GA analysis results indicated were very close and matched with the actual values. The model framework and analysis presented are used to develop a decision support tool for managers for early intervention to minimize system deterioration, reduce maintenance costs and increase productivity. Furthermore, it allows early identifying the potential area ofimprovement to support continuous improvement (CI) objectives by identifying and eliminating unnecessary maintenance activities. The proposed model framework uses the ANN approach to identify the current state and predict the future of the system performance to ensure confidence in the results. The contribution of the paper will be helpful for experts like managers, reliability engineers, and maintenance engineers to identify the state of the system's performance in advance.
期刊介绍:
The Journal of Mechanical Engineering & Sciences "JMES" (ISSN (Print): 2289-4659; e-ISSN: 2231-8380) is an open access peer-review journal (Indexed by Emerging Source Citation Index (ESCI), WOS; SCOPUS Index (Elsevier); EBSCOhost; Index Copernicus; Ulrichsweb, DOAJ, Google Scholar) which publishes original and review articles that advance the understanding of both the fundamentals of engineering science and its application to the solution of challenges and problems in mechanical engineering systems, machines and components. It is particularly concerned with the demonstration of engineering science solutions to specific industrial problems. Original contributions providing insight into the use of analytical, computational modeling, structural mechanics, metal forming, behavior and application of advanced materials, impact mechanics, strain localization and other effects of nonlinearity, fluid mechanics, robotics, tribology, thermodynamics, and materials processing generally from the core of the journal contents are encouraged. Only original, innovative and novel papers will be considered for publication in the JMES. The authors are required to confirm that their paper has not been submitted to any other journal in English or any other language. The JMES welcome contributions from all who wishes to report on new developments and latest findings in mechanical engineering.