异常检测的时间序列数据分析

Katalin Ferencz, J. Domokos, L. Kovács
{"title":"异常检测的时间序列数据分析","authors":"Katalin Ferencz, J. Domokos, L. Kovács","doi":"10.1109/CINTI-MACRo57952.2022.10029486","DOIUrl":null,"url":null,"abstract":"The integration of sensors in our everyday lives and in industry presents a serious challenge to data analysis professionals. Since the use of smart devices has exponentially increased the amount of data collected in all areas, we must not only store these data, but also extract valuable information from those using some data analysis method. In many cases, the increased amount of data also causes problems for data analysis algorithms, so we need to be continuously updated and specialized for fundamental purposes. In the article, we will present some data analysis techniques, starting from the simplest statistical methods to more complex techniques using machine learning and presenting one of their possible applications. In our study, we will use the KMeans clustering algorithm and examine its effectiveness in time series sensor data analysis.","PeriodicalId":18535,"journal":{"name":"Micro","volume":"35 1","pages":"000095-000100"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of time series data for anomaly detection\",\"authors\":\"Katalin Ferencz, J. Domokos, L. Kovács\",\"doi\":\"10.1109/CINTI-MACRo57952.2022.10029486\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The integration of sensors in our everyday lives and in industry presents a serious challenge to data analysis professionals. Since the use of smart devices has exponentially increased the amount of data collected in all areas, we must not only store these data, but also extract valuable information from those using some data analysis method. In many cases, the increased amount of data also causes problems for data analysis algorithms, so we need to be continuously updated and specialized for fundamental purposes. In the article, we will present some data analysis techniques, starting from the simplest statistical methods to more complex techniques using machine learning and presenting one of their possible applications. In our study, we will use the KMeans clustering algorithm and examine its effectiveness in time series sensor data analysis.\",\"PeriodicalId\":18535,\"journal\":{\"name\":\"Micro\",\"volume\":\"35 1\",\"pages\":\"000095-000100\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Micro\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CINTI-MACRo57952.2022.10029486\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CINTI-MACRo57952.2022.10029486","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

传感器在我们日常生活和工业中的集成对数据分析专业人员提出了严峻的挑战。由于智能设备的使用使各个领域收集的数据量呈指数级增长,我们不仅要存储这些数据,还要使用一些数据分析方法从中提取有价值的信息。在很多情况下,数据量的增加也会给数据分析算法带来问题,所以我们需要不断更新和专门化,以达到根本目的。在本文中,我们将介绍一些数据分析技术,从最简单的统计方法到使用机器学习的更复杂的技术,并介绍它们的一种可能的应用。在我们的研究中,我们将使用KMeans聚类算法并检验其在时间序列传感器数据分析中的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Analysis of time series data for anomaly detection
The integration of sensors in our everyday lives and in industry presents a serious challenge to data analysis professionals. Since the use of smart devices has exponentially increased the amount of data collected in all areas, we must not only store these data, but also extract valuable information from those using some data analysis method. In many cases, the increased amount of data also causes problems for data analysis algorithms, so we need to be continuously updated and specialized for fundamental purposes. In the article, we will present some data analysis techniques, starting from the simplest statistical methods to more complex techniques using machine learning and presenting one of their possible applications. In our study, we will use the KMeans clustering algorithm and examine its effectiveness in time series sensor data analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Exploring Microstructure Patterns: Influence on Hydrophobic Properties of 3D-Printed Surfaces Optical and Morphological Characterization of Nanoscale Oxides Grown in Low-Energy H+-Implanted c-Silicon Extending Polymer Opal Structural Color Properties into the Near-Infrared Implementation of Numerical Model for Prediction of Temperature Distribution for Metallic-Coated Firefighter Protective Clothing A Microfluidic Paper-Based Lateral Flow Device for Quantitative ELISA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1