空间环境对设备和结构的影响——当前和未来的技术

Dionysios Tompros, D. Mouzakis
{"title":"空间环境对设备和结构的影响——当前和未来的技术","authors":"Dionysios Tompros, D. Mouzakis","doi":"10.1177/15485129211033038","DOIUrl":null,"url":null,"abstract":"The space environment is extremely hostile to the spacecraft but also to the equipment it carries. The materials which are used to the external side of the spacecraft, the solar panels, the sensors, and the electronics circuits, suffer greatly from their exposure to it. Extreme temperatures, ultraviolet radiation, ionizing radiation from solar proton events and cosmic rays, atomic oxygen in LEO, as well as collisions with micrometeoroids and space debris are factors that degrade the stuff, multiply the mission cost, and increase the risk. Therefore, the state-of-art of material technology is needed. In this study, a set of materials and technologies are presented, which reduce the above-mentioned risks. Extreme temperatures, ultra-vacuum, atomic oxygen, and high-energy radiation including particles as well as energy sources (X- and gamma rays) are potential extreme exposure conditions. Testing and qualification of materials exposed to these extreme conditions is a difficult task, to enable the design and manufacturing of high-endurance reliable components to be used in the world’s most sophisticated satellite and spacecraft components, as well as in future endeavors into the vicinity of the Solar System.","PeriodicalId":44661,"journal":{"name":"Journal of Defense Modeling and Simulation-Applications Methodology Technology-JDMS","volume":"77 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2021-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Space environment effects on equipment and structures—current and future technologies\",\"authors\":\"Dionysios Tompros, D. Mouzakis\",\"doi\":\"10.1177/15485129211033038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The space environment is extremely hostile to the spacecraft but also to the equipment it carries. The materials which are used to the external side of the spacecraft, the solar panels, the sensors, and the electronics circuits, suffer greatly from their exposure to it. Extreme temperatures, ultraviolet radiation, ionizing radiation from solar proton events and cosmic rays, atomic oxygen in LEO, as well as collisions with micrometeoroids and space debris are factors that degrade the stuff, multiply the mission cost, and increase the risk. Therefore, the state-of-art of material technology is needed. In this study, a set of materials and technologies are presented, which reduce the above-mentioned risks. Extreme temperatures, ultra-vacuum, atomic oxygen, and high-energy radiation including particles as well as energy sources (X- and gamma rays) are potential extreme exposure conditions. Testing and qualification of materials exposed to these extreme conditions is a difficult task, to enable the design and manufacturing of high-endurance reliable components to be used in the world’s most sophisticated satellite and spacecraft components, as well as in future endeavors into the vicinity of the Solar System.\",\"PeriodicalId\":44661,\"journal\":{\"name\":\"Journal of Defense Modeling and Simulation-Applications Methodology Technology-JDMS\",\"volume\":\"77 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2021-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Defense Modeling and Simulation-Applications Methodology Technology-JDMS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/15485129211033038\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Defense Modeling and Simulation-Applications Methodology Technology-JDMS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/15485129211033038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

太空环境对航天器及其携带的设备极为不利。用于航天器外部的材料,如太阳能电池板、传感器和电子电路,由于暴露在空气中而受到极大损害。极端温度、紫外线辐射、太阳质子事件和宇宙射线的电离辐射、低轨道上的原子氧,以及与微流星体和空间碎片的碰撞,都是降低材料质量、增加任务成本和增加风险的因素。因此,需要最先进的材料技术。本研究提出了一套降低上述风险的材料和技术。极端温度、超真空、原子氧和高能辐射(包括粒子和能量源(X射线和伽马射线))都是潜在的极端暴露条件。对暴露在这些极端条件下的材料进行测试和鉴定是一项艰巨的任务,以使设计和制造高耐久性可靠部件能够用于世界上最复杂的卫星和航天器部件,以及未来进入太阳系附近的努力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Space environment effects on equipment and structures—current and future technologies
The space environment is extremely hostile to the spacecraft but also to the equipment it carries. The materials which are used to the external side of the spacecraft, the solar panels, the sensors, and the electronics circuits, suffer greatly from their exposure to it. Extreme temperatures, ultraviolet radiation, ionizing radiation from solar proton events and cosmic rays, atomic oxygen in LEO, as well as collisions with micrometeoroids and space debris are factors that degrade the stuff, multiply the mission cost, and increase the risk. Therefore, the state-of-art of material technology is needed. In this study, a set of materials and technologies are presented, which reduce the above-mentioned risks. Extreme temperatures, ultra-vacuum, atomic oxygen, and high-energy radiation including particles as well as energy sources (X- and gamma rays) are potential extreme exposure conditions. Testing and qualification of materials exposed to these extreme conditions is a difficult task, to enable the design and manufacturing of high-endurance reliable components to be used in the world’s most sophisticated satellite and spacecraft components, as well as in future endeavors into the vicinity of the Solar System.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.80
自引率
12.50%
发文量
40
期刊最新文献
Modeling fog and friction in military enterprise Adapting military doctrine in the shadow of the future Modeling of Russian–Ukrainian war based on fuzzy cognitive map with genetic tuning Decision-making in the shadow of strategic competition costs Multiple UAVs on a shared tether: Use cases, modeling, and probabilistic path planning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1