{"title":"铜纳米颗粒合成的非生物策略方法综述","authors":"S. Munir, A. Gul","doi":"10.2478/acmy-2021-0005","DOIUrl":null,"url":null,"abstract":"Abstract Metal Nanoparticles show specific physical and chemical properties attributed to its small size and high surface area to volume ratio. These chemical and physical properties using different strategies and conditions enhance its biological application especially in the field of medicine. Earth abundant and cheap cupper metal is the essential element in many processes and has been used as a focus element to synthesize nanoparticles by different methods using new technology, which are being broadly classified as biological methods that includes green synthesis, microorganism etc. and the non-biological synthesis which includes chemical and Physical methods. Thus, the imperative need to synthesize cupper nanomaterial that are economic and efficient is necessary. This review have briefly described the modern methods to synthesize nanoparticles particularly focusing on the non-biological methods of cupper nanoparticles. An overview of current methodologies that are used for cupper nanoparticle mainly chemical reduction using organic and inorganic solvents, Reverse micelle, microemulsion, polyol method and several physical methods such as vapor condensation, photo irradiation and plasma synthesis methods are discussed.","PeriodicalId":7114,"journal":{"name":"Acta Chemica Malaysia","volume":"38 1","pages":"24 - 37"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"An Overview of Strategic Non-Biological Approaches for The Synthesis of Cupper Nanoparticles\",\"authors\":\"S. Munir, A. Gul\",\"doi\":\"10.2478/acmy-2021-0005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Metal Nanoparticles show specific physical and chemical properties attributed to its small size and high surface area to volume ratio. These chemical and physical properties using different strategies and conditions enhance its biological application especially in the field of medicine. Earth abundant and cheap cupper metal is the essential element in many processes and has been used as a focus element to synthesize nanoparticles by different methods using new technology, which are being broadly classified as biological methods that includes green synthesis, microorganism etc. and the non-biological synthesis which includes chemical and Physical methods. Thus, the imperative need to synthesize cupper nanomaterial that are economic and efficient is necessary. This review have briefly described the modern methods to synthesize nanoparticles particularly focusing on the non-biological methods of cupper nanoparticles. An overview of current methodologies that are used for cupper nanoparticle mainly chemical reduction using organic and inorganic solvents, Reverse micelle, microemulsion, polyol method and several physical methods such as vapor condensation, photo irradiation and plasma synthesis methods are discussed.\",\"PeriodicalId\":7114,\"journal\":{\"name\":\"Acta Chemica Malaysia\",\"volume\":\"38 1\",\"pages\":\"24 - 37\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Chemica Malaysia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/acmy-2021-0005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Chemica Malaysia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/acmy-2021-0005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An Overview of Strategic Non-Biological Approaches for The Synthesis of Cupper Nanoparticles
Abstract Metal Nanoparticles show specific physical and chemical properties attributed to its small size and high surface area to volume ratio. These chemical and physical properties using different strategies and conditions enhance its biological application especially in the field of medicine. Earth abundant and cheap cupper metal is the essential element in many processes and has been used as a focus element to synthesize nanoparticles by different methods using new technology, which are being broadly classified as biological methods that includes green synthesis, microorganism etc. and the non-biological synthesis which includes chemical and Physical methods. Thus, the imperative need to synthesize cupper nanomaterial that are economic and efficient is necessary. This review have briefly described the modern methods to synthesize nanoparticles particularly focusing on the non-biological methods of cupper nanoparticles. An overview of current methodologies that are used for cupper nanoparticle mainly chemical reduction using organic and inorganic solvents, Reverse micelle, microemulsion, polyol method and several physical methods such as vapor condensation, photo irradiation and plasma synthesis methods are discussed.