E. A. Enemose, J. S. Nworu, Onunkwo Innocent, W. E. Morka
Abstract As part of the current research for more effective antimalarial drug, Cu (II) complex of sulphamethazine with 1,10 phenanthroline was synthesized. The novel complex was characterized by Elemental analysis, FT-IR and electronic spectroscopy. The novel complex is insoluble in water, which is an indication of covalent and non- electrolyte character. The elemental analysis result of the complex correspond with the proposed formula [Cu(SUF)(phen)(SCN)2]. The electronic spectrum of sulfamethazine and 1, 10- phen showed absorption bands at 212 nm (47169 cm−1) and 306 nm (32679 cm–1). These bands were assigned to the n – δ* and π – δ* transitions. The infrared bands were seen at 3443 – 3344 cm −1which were attributed to the presence of v(NH2), v(NH) and v (OH) vibrations experience bathochromic shift in the metal complex. The parent ligands acted as a bidentate chelating agent showing coordination through the pyridine nitrogen and the nitrogen of the NH moiety in this case.
{"title":"Spectroscopic Study of Metal (II) Complex of Sulphamethazine with 1,10 Phenanthroline","authors":"E. A. Enemose, J. S. Nworu, Onunkwo Innocent, W. E. Morka","doi":"10.2478/acmy-2021-0010","DOIUrl":"https://doi.org/10.2478/acmy-2021-0010","url":null,"abstract":"Abstract As part of the current research for more effective antimalarial drug, Cu (II) complex of sulphamethazine with 1,10 phenanthroline was synthesized. The novel complex was characterized by Elemental analysis, FT-IR and electronic spectroscopy. The novel complex is insoluble in water, which is an indication of covalent and non- electrolyte character. The elemental analysis result of the complex correspond with the proposed formula [Cu(SUF)(phen)(SCN)2]. The electronic spectrum of sulfamethazine and 1, 10- phen showed absorption bands at 212 nm (47169 cm−1) and 306 nm (32679 cm–1). These bands were assigned to the n – δ* and π – δ* transitions. The infrared bands were seen at 3443 – 3344 cm −1which were attributed to the presence of v(NH2), v(NH) and v (OH) vibrations experience bathochromic shift in the metal complex. The parent ligands acted as a bidentate chelating agent showing coordination through the pyridine nitrogen and the nitrogen of the NH moiety in this case.","PeriodicalId":7114,"journal":{"name":"Acta Chemica Malaysia","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85601988","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract Adsorbents were derived from banana peel through chemical treatment using phosphoric acid, potassium hydroxide, and sodium hydroxide to adsorb methylene blue from water. The adsorption of methylene blue was performed at varying concentrations and contact times. The equilibrium data fitted well with Langmuir equation, with a maximum monolayer adsorption capacity of 99.28 mg/g (28%). Phosphoric acid-treated adsorbent exhibits a greater capacity despite a lower affinity than the other adsorbents. A two-stage batch adsorber model was developed to optimize the adsorbent dosage for performance evaluation. Banana peel is a promising resource of adsorbent for wastewater treatment.
{"title":"Isotherm and kinetics of methylene blue removal by Musa acuminata peel adsorbents","authors":"Nurul Shafikah Mohd Noor, M. Zaini, M. Yunus","doi":"10.2478/acmy-2021-0009","DOIUrl":"https://doi.org/10.2478/acmy-2021-0009","url":null,"abstract":"Abstract Adsorbents were derived from banana peel through chemical treatment using phosphoric acid, potassium hydroxide, and sodium hydroxide to adsorb methylene blue from water. The adsorption of methylene blue was performed at varying concentrations and contact times. The equilibrium data fitted well with Langmuir equation, with a maximum monolayer adsorption capacity of 99.28 mg/g (28%). Phosphoric acid-treated adsorbent exhibits a greater capacity despite a lower affinity than the other adsorbents. A two-stage batch adsorber model was developed to optimize the adsorbent dosage for performance evaluation. Banana peel is a promising resource of adsorbent for wastewater treatment.","PeriodicalId":7114,"journal":{"name":"Acta Chemica Malaysia","volume":"35 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76933109","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract Coastal area of Bangladesh is one of the significant ecologically productive areas and full of rich biodiversity that includes variety of species that are endemic to this region. The Shipbreaking activity has turned out to be more significant within the economic situation of the poverty-stricken Bangladesh. The study vicinity was alienated into the Shipbreaking zone and control site for proportional investigation. The study was administered to assess the changing pattern of the concentration of trace metals in soil Soil samples of the study areas and its impact on fish diversity of the ship breaking area in Bangladesh over the 40 years. From the finding of the study, it had been found that the concentration of the heavy metals found within the ship breaking area followed a pattern within the following fashion Fe>Pb>Cr>Mn>Zn>Ni>Cu>Cd>Hg. The finding of this heavy metal analysis of sediments demonstrated that there has been in an increment of two to eight times of selected heavy metals from the finding of 1980 to 2019. The study compared with the two relatively pristine or less impacted (undisturbed) areas, that served because of the reference zone. These studies also found that about 30 species of fishes became irregular or are threatened with extinction than they were 40 years ago.
{"title":"Changing Pattern of Heavy Metals Accumulation in and around in Ship breaking Area Over the 40 years and Its Impact on Fish Diversity in Adjacent Areas of Bangladesh","authors":"P. Barua, Syed Hafizur Rahman, M. Barua","doi":"10.2478/acmy-2021-0008","DOIUrl":"https://doi.org/10.2478/acmy-2021-0008","url":null,"abstract":"Abstract Coastal area of Bangladesh is one of the significant ecologically productive areas and full of rich biodiversity that includes variety of species that are endemic to this region. The Shipbreaking activity has turned out to be more significant within the economic situation of the poverty-stricken Bangladesh. The study vicinity was alienated into the Shipbreaking zone and control site for proportional investigation. The study was administered to assess the changing pattern of the concentration of trace metals in soil Soil samples of the study areas and its impact on fish diversity of the ship breaking area in Bangladesh over the 40 years. From the finding of the study, it had been found that the concentration of the heavy metals found within the ship breaking area followed a pattern within the following fashion Fe>Pb>Cr>Mn>Zn>Ni>Cu>Cd>Hg. The finding of this heavy metal analysis of sediments demonstrated that there has been in an increment of two to eight times of selected heavy metals from the finding of 1980 to 2019. The study compared with the two relatively pristine or less impacted (undisturbed) areas, that served because of the reference zone. These studies also found that about 30 species of fishes became irregular or are threatened with extinction than they were 40 years ago.","PeriodicalId":7114,"journal":{"name":"Acta Chemica Malaysia","volume":"22 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84474814","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Eze Ilochi Nkechinyere Olivia, Ejimofor Samuel Adimchinobi, Onuegbu Theresa Uzoma
Abstract In view of the global need to curb the effect of contaminants in waste water on our environment, the adsorption potentials of modified carbon from bambaranut (Vigna subterranean) shell was investigated for its efficiency in the removal of methylene blue from waste water. The adsorbent morphology and surface chemistry were established by Brunauer-Emmett-Teller (BET) determination and Scanning Electron Microscopy (SEM), as well as other standard laboratory procedures. The prepared material was used for the uptake of MB from aqueous solution in a batch process, using UV spectrophotometer Model 752 at 620nm to analyze for the residual dye concentration. The effect of operational parameters such as contact time, adsorbent dosage, initial dye concentration and pH were analyzed to determine the factors controlling the rate of adsorption. Results from the study showed that the active carbon prepared was a porous material, with surface area of 193 m2/g, average pore size of about 10.98nm, and pore volume of 0.530cm3/g. With increase in initial dye concentration from 15mg/l to 75mg/l, a decrease in percent adsorption from 95.4% to 72.19% was observed. Increase in adsorbent dosage (from 0.1g to 0.5g), contact time (from 5 min to 40 min) and pH from 2 to 10 resulted in increase in percent adsorption from 84.03% to 98.83%, 54.24% to 84% and 48.17% to 84.03% respectively. About 98.83% removal of MB dye was achieved after 20 min, at pH of 6, temperature of 27±2oC, 0.5g weight of adsorbent and initial concentration of 60mg/l of 50ml MB dye solution. Langmuir isotherm best fits the equilibrium adsorption data with R2 = 0.996; the adsorption intensity obtained from Freundlich model (n>1) and the energy of adsorption obtained from the D-R model (< 8kJ/mol) suggested that physisorption dominates the adsorption of methylene blue onto the prepared activated carbon. Adsorption kinetic data was best described using Pseudo second order kinetic model (R2 = 0.996), giving equilibrium rate constant (k2) of 7690g mg-1 min-1. The characteristic results showed that bambaranut shell can be employed as an alternative to commercial adsorbents in the removal of methylene blue dye from aqueous solutions and waste water.
{"title":"Equilibrium and Kinetic Studies of Liquid Phase Adsorption of Methylene Blue Onto Phosphoric Acid Modified Bambaranut Shell","authors":"Eze Ilochi Nkechinyere Olivia, Ejimofor Samuel Adimchinobi, Onuegbu Theresa Uzoma","doi":"10.2478/acmy-2021-0007","DOIUrl":"https://doi.org/10.2478/acmy-2021-0007","url":null,"abstract":"Abstract In view of the global need to curb the effect of contaminants in waste water on our environment, the adsorption potentials of modified carbon from bambaranut (Vigna subterranean) shell was investigated for its efficiency in the removal of methylene blue from waste water. The adsorbent morphology and surface chemistry were established by Brunauer-Emmett-Teller (BET) determination and Scanning Electron Microscopy (SEM), as well as other standard laboratory procedures. The prepared material was used for the uptake of MB from aqueous solution in a batch process, using UV spectrophotometer Model 752 at 620nm to analyze for the residual dye concentration. The effect of operational parameters such as contact time, adsorbent dosage, initial dye concentration and pH were analyzed to determine the factors controlling the rate of adsorption. Results from the study showed that the active carbon prepared was a porous material, with surface area of 193 m2/g, average pore size of about 10.98nm, and pore volume of 0.530cm3/g. With increase in initial dye concentration from 15mg/l to 75mg/l, a decrease in percent adsorption from 95.4% to 72.19% was observed. Increase in adsorbent dosage (from 0.1g to 0.5g), contact time (from 5 min to 40 min) and pH from 2 to 10 resulted in increase in percent adsorption from 84.03% to 98.83%, 54.24% to 84% and 48.17% to 84.03% respectively. About 98.83% removal of MB dye was achieved after 20 min, at pH of 6, temperature of 27±2oC, 0.5g weight of adsorbent and initial concentration of 60mg/l of 50ml MB dye solution. Langmuir isotherm best fits the equilibrium adsorption data with R2 = 0.996; the adsorption intensity obtained from Freundlich model (n>1) and the energy of adsorption obtained from the D-R model (< 8kJ/mol) suggested that physisorption dominates the adsorption of methylene blue onto the prepared activated carbon. Adsorption kinetic data was best described using Pseudo second order kinetic model (R2 = 0.996), giving equilibrium rate constant (k2) of 7690g mg-1 min-1. The characteristic results showed that bambaranut shell can be employed as an alternative to commercial adsorbents in the removal of methylene blue dye from aqueous solutions and waste water.","PeriodicalId":7114,"journal":{"name":"Acta Chemica Malaysia","volume":"33 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78891117","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract Nigeria demand for sustainable, affordable and accessible energy is on the rise. Hence, this led to rigorous research to determine affordable processes of using waste materials for production of sustainable energy. In this research pyrolysis was carried out in a fabricated fixed bed pilot-scale reactor using Gmelina arborea (sawdust) biomass for the production of bio-oil. The physical, chemical properties and the ultimate analysis of the bio oil produced were determined following standard methods. The physicochemical properties and ultimate analysis obtained were favourable. The highest moisture content of 21 % at 600 °C and least moisture content of 12 % at 900 °C were obtained from Gmelina arborea. The elemental results of the products show low sulphur quantity which is of good prospects that Gmelina arborea are good materials for bioenergy production without posing danger to the environment. Utilisation of Gmelina arborea for bio-oil production as an alternative fuel would shun unfavourable environmental abasement related to the use of conventional fuels.
{"title":"Bio-Fuel Properties and Elemental Analysis of Bio-Oil Produced from Pyrolysis of Gmelina Arborea","authors":"I. A. Adegoke, O. Y. Ogunsanwo, A. R. Ige","doi":"10.2478/acmy-2021-0006","DOIUrl":"https://doi.org/10.2478/acmy-2021-0006","url":null,"abstract":"Abstract Nigeria demand for sustainable, affordable and accessible energy is on the rise. Hence, this led to rigorous research to determine affordable processes of using waste materials for production of sustainable energy. In this research pyrolysis was carried out in a fabricated fixed bed pilot-scale reactor using Gmelina arborea (sawdust) biomass for the production of bio-oil. The physical, chemical properties and the ultimate analysis of the bio oil produced were determined following standard methods. The physicochemical properties and ultimate analysis obtained were favourable. The highest moisture content of 21 % at 600 °C and least moisture content of 12 % at 900 °C were obtained from Gmelina arborea. The elemental results of the products show low sulphur quantity which is of good prospects that Gmelina arborea are good materials for bioenergy production without posing danger to the environment. Utilisation of Gmelina arborea for bio-oil production as an alternative fuel would shun unfavourable environmental abasement related to the use of conventional fuels.","PeriodicalId":7114,"journal":{"name":"Acta Chemica Malaysia","volume":"19 1","pages":"38 - 41"},"PeriodicalIF":0.0,"publicationDate":"2020-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81746301","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract Metal Nanoparticles show specific physical and chemical properties attributed to its small size and high surface area to volume ratio. These chemical and physical properties using different strategies and conditions enhance its biological application especially in the field of medicine. Earth abundant and cheap cupper metal is the essential element in many processes and has been used as a focus element to synthesize nanoparticles by different methods using new technology, which are being broadly classified as biological methods that includes green synthesis, microorganism etc. and the non-biological synthesis which includes chemical and Physical methods. Thus, the imperative need to synthesize cupper nanomaterial that are economic and efficient is necessary. This review have briefly described the modern methods to synthesize nanoparticles particularly focusing on the non-biological methods of cupper nanoparticles. An overview of current methodologies that are used for cupper nanoparticle mainly chemical reduction using organic and inorganic solvents, Reverse micelle, microemulsion, polyol method and several physical methods such as vapor condensation, photo irradiation and plasma synthesis methods are discussed.
{"title":"An Overview of Strategic Non-Biological Approaches for The Synthesis of Cupper Nanoparticles","authors":"S. Munir, A. Gul","doi":"10.2478/acmy-2021-0005","DOIUrl":"https://doi.org/10.2478/acmy-2021-0005","url":null,"abstract":"Abstract Metal Nanoparticles show specific physical and chemical properties attributed to its small size and high surface area to volume ratio. These chemical and physical properties using different strategies and conditions enhance its biological application especially in the field of medicine. Earth abundant and cheap cupper metal is the essential element in many processes and has been used as a focus element to synthesize nanoparticles by different methods using new technology, which are being broadly classified as biological methods that includes green synthesis, microorganism etc. and the non-biological synthesis which includes chemical and Physical methods. Thus, the imperative need to synthesize cupper nanomaterial that are economic and efficient is necessary. This review have briefly described the modern methods to synthesize nanoparticles particularly focusing on the non-biological methods of cupper nanoparticles. An overview of current methodologies that are used for cupper nanoparticle mainly chemical reduction using organic and inorganic solvents, Reverse micelle, microemulsion, polyol method and several physical methods such as vapor condensation, photo irradiation and plasma synthesis methods are discussed.","PeriodicalId":7114,"journal":{"name":"Acta Chemica Malaysia","volume":"38 1","pages":"24 - 37"},"PeriodicalIF":0.0,"publicationDate":"2020-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80949055","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract Microplastic (MP) is currently a subject of discussion in all parts of the world because it has increasingly over the years become the dominant source of pollution in marine ecosystem. Huge number of these Mps emanate from waste management, decommissioning of ships and oil rigs, plastic products in aquaculture and fishery, sewage treatment, consumer products, agricultural production, transportation, offshore oil and gas production and city dust and wears. Microplastic are characteristically non- biodegradable or durable, exhibits buoyancy, travel long distances, complex with toxic chemicals and bioaccumulate being invisible to the human eye. Classification of MPs into primary and secondary based on source and established standard protocols visa-vis the sampling and identification in matrices were critically reviewed. Physicochemical processes for identification of MPs such as pyrolysis-Gas chromatography/Mass spectrometry, FTIR, Raman spectroscopy, SEM-GS and TGA/MS were reviewed. Deleterious chemicals such as polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), dioxins, phthalates, polycyclic aromatic hydrocarbons (PAHs) and persistent organic chemicals (POCs) associated with MPs and mechanisms of chelation were appraised. Several menace and health hazards such as hepatic inflammation, genetic mutation, increase in reactive oxygen species (ROS) /oxidative stress, tissue necrosis and proliferation of cells linked with MPs were also discussed. Furthermore, green approaches to arresting the menace such as replacing polymer products with biopolymer an eco-friendly alternative, recycling of plastic products, use of paper bags and glass materials and abrogation of consumer products laced with microbeads were advocated.
{"title":"Microplastics: Holistic overview of source, identification, interaction, health and environmental implications and strategies of abatement","authors":"N. F. Sunday","doi":"10.2478/acmy-2021-0004","DOIUrl":"https://doi.org/10.2478/acmy-2021-0004","url":null,"abstract":"Abstract Microplastic (MP) is currently a subject of discussion in all parts of the world because it has increasingly over the years become the dominant source of pollution in marine ecosystem. Huge number of these Mps emanate from waste management, decommissioning of ships and oil rigs, plastic products in aquaculture and fishery, sewage treatment, consumer products, agricultural production, transportation, offshore oil and gas production and city dust and wears. Microplastic are characteristically non- biodegradable or durable, exhibits buoyancy, travel long distances, complex with toxic chemicals and bioaccumulate being invisible to the human eye. Classification of MPs into primary and secondary based on source and established standard protocols visa-vis the sampling and identification in matrices were critically reviewed. Physicochemical processes for identification of MPs such as pyrolysis-Gas chromatography/Mass spectrometry, FTIR, Raman spectroscopy, SEM-GS and TGA/MS were reviewed. Deleterious chemicals such as polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), dioxins, phthalates, polycyclic aromatic hydrocarbons (PAHs) and persistent organic chemicals (POCs) associated with MPs and mechanisms of chelation were appraised. Several menace and health hazards such as hepatic inflammation, genetic mutation, increase in reactive oxygen species (ROS) /oxidative stress, tissue necrosis and proliferation of cells linked with MPs were also discussed. Furthermore, green approaches to arresting the menace such as replacing polymer products with biopolymer an eco-friendly alternative, recycling of plastic products, use of paper bags and glass materials and abrogation of consumer products laced with microbeads were advocated.","PeriodicalId":7114,"journal":{"name":"Acta Chemica Malaysia","volume":"85 1","pages":"18 - 23"},"PeriodicalIF":0.0,"publicationDate":"2020-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82876806","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract The study depicts the production, optimization and characterization of bio-oil from pyrolyzed rice husk using a fabricated fixed bed reactor. The pyrolysis process was conducted with bio-oil response, bio-char response and non-condensable gases response as products. The effect of pyrolysis variables were observed by the production of the bio-oil as the response. Sixty runs of pyrolysis experiments were suggested by Box Benkhen design indicated optimum pyrolysis conditions at particle size of 2.03mm mesh, reaction time of 81.80 mins and temperature of 650oC for rice husk. The maximum bio-oil yield was obtained with 38.39% at optimum condition of the variables. The bio-oil sample obtained had better performance compared with ASTM standard. Such a determination would contribute so immensely to a significant comprehension of the chemical efficiency of the pyrolysis reaction.
{"title":"Optimization and Characterization of Bio-oil Produced from Rice Husk Using Surface Response Methodology","authors":"Ige Ayodeji Rapheal, Elinge Cosmos Moki, A. Muhammad, Gwani Mohammed, Lawal Hassan Gusauc","doi":"10.2478/acmy-2021-0003","DOIUrl":"https://doi.org/10.2478/acmy-2021-0003","url":null,"abstract":"Abstract The study depicts the production, optimization and characterization of bio-oil from pyrolyzed rice husk using a fabricated fixed bed reactor. The pyrolysis process was conducted with bio-oil response, bio-char response and non-condensable gases response as products. The effect of pyrolysis variables were observed by the production of the bio-oil as the response. Sixty runs of pyrolysis experiments were suggested by Box Benkhen design indicated optimum pyrolysis conditions at particle size of 2.03mm mesh, reaction time of 81.80 mins and temperature of 650oC for rice husk. The maximum bio-oil yield was obtained with 38.39% at optimum condition of the variables. The bio-oil sample obtained had better performance compared with ASTM standard. Such a determination would contribute so immensely to a significant comprehension of the chemical efficiency of the pyrolysis reaction.","PeriodicalId":7114,"journal":{"name":"Acta Chemica Malaysia","volume":"35 1","pages":"10 - 17"},"PeriodicalIF":0.0,"publicationDate":"2020-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90071520","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract Christia vespertilionis (butterfly wing plant) is an ornamental plant originated from South East Asia with reported usage in traditional medicine practice and potential as an anticancer and antitumor. This research aims to estimate the genome size of C. vespertilionis via flow cytometry (FCM) method. The research was conducted with the optimisation of nuclear suspension preparation followed by the genome size estimation. Two chopping techniques [manual chopping (MC) and BDTM Medimachine (MM)] and two lysis buffers (Otto and LBO1) were tested. Otto buffer with manual chopping was found to be the most suitable method, generated fine DNA peak with minimum debris background, and coefficient of variation (CV) value less than 3%. Five replicates of the FCM analysis were made for the genome size determination. The estimated genome size of C. vespertilionis was found to be 3.22 pg by using Glycine max cv. Polanka (2C=2.5pg) as an external reference standard. Further comparison with other Christia species was not possible due to the lack of data on genome size. The genome size data of C. vespertilionis can be useful for future morphology and genetics studies of Christia species.
摘要蝶翅植物是一种原产于东南亚的观赏植物,具有传统医学用途和潜在的抗癌、抗肿瘤作用。本研究旨在利用流式细胞术(FCM)方法估计大褐藻的基因组大小。本研究首先进行了核悬液制备的优化,然后进行了基因组大小的估计。测试了两种切碎技术[手动切碎(MC)和BDTM Medimachine (MM)]和两种裂解缓冲液(Otto和LBO1)。结果表明,人工斩波Otto缓冲是最合适的方法,能以最小的碎片背景生成精细的DNA峰,变异系数(CV)值小于3%。FCM分析进行了5次重复,以确定基因组大小。利用Glycine max cv,估计C. vespertilionis的基因组大小为3.22 pg。波兰卡(2C=2.5pg)作为外部参考标准。由于缺乏基因组大小的数据,无法与其他克里斯蒂亚物种进行进一步比较。该植物的基因组大小数据可为今后植物形态学和遗传学的研究提供参考。
{"title":"Nuclear Genome Size Determination Of Christia Vespertilionis Via Flow Cytometry","authors":"Mohd Razik Midin, M. Fikri, Siti Sarah Zailani","doi":"10.2478/acmy-2020-0012","DOIUrl":"https://doi.org/10.2478/acmy-2020-0012","url":null,"abstract":"Abstract Christia vespertilionis (butterfly wing plant) is an ornamental plant originated from South East Asia with reported usage in traditional medicine practice and potential as an anticancer and antitumor. This research aims to estimate the genome size of C. vespertilionis via flow cytometry (FCM) method. The research was conducted with the optimisation of nuclear suspension preparation followed by the genome size estimation. Two chopping techniques [manual chopping (MC) and BDTM Medimachine (MM)] and two lysis buffers (Otto and LBO1) were tested. Otto buffer with manual chopping was found to be the most suitable method, generated fine DNA peak with minimum debris background, and coefficient of variation (CV) value less than 3%. Five replicates of the FCM analysis were made for the genome size determination. The estimated genome size of C. vespertilionis was found to be 3.22 pg by using Glycine max cv. Polanka (2C=2.5pg) as an external reference standard. Further comparison with other Christia species was not possible due to the lack of data on genome size. The genome size data of C. vespertilionis can be useful for future morphology and genetics studies of Christia species.","PeriodicalId":7114,"journal":{"name":"Acta Chemica Malaysia","volume":"31 1","pages":"72 - 75"},"PeriodicalIF":0.0,"publicationDate":"2020-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76504848","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
N. Elom, Obianuju Nwanji, I. Ikelle, J. S. Nworu, C. Chukwu
Abstract This study examined potentially toxic elements (PTEs) from poultry feeds. The presence of PTEs in the environment raises health concern because these elements can be toxic, ubiquitous and cannot be degraded to non-toxic forms by any known method and as a result remain in the environment for decades. This is a potential pathway through which these PTEs could easily enter the food chain. Six PTEs (Cd, Cr, Cu, Pb, Mn, Ni and Zn) were determined from four feed types (starter, grower, finisher and layer) from four manufacturers coded A, B, C and D. The samples were prepared, digested and analysed for PTEs using atomic absorption spectrophotometer. The mean concentrations obtained were in the following ranges: 0.49 – 0.76 mg/kg (Cd); 11.9 – 7.90 mg/kg (Cr); 5.10 - 7.91 mg/kg (Cu); 7.17 - 9.47 mg/kg (Pb); 26.9 - 34.9 mg/kg (Mn); 3.80 - 6.50 mg/kg (Ni) and 27.8 - 38.4 mg/kg (Zn). These results were compared with the maximum acceptable concentration for PTEs in feeds as stipulated by the European Union standard and the concentrations of Pb and Ni exceeded maximum acceptable concentration. When concentrations exceed set standard, it implies risk to human health. Thus, the need for continuous monitoring of feed compositions.
{"title":"Determination of Potentially Toxic Elements from Poultry Feeds in Ebonyi State, Nigeria","authors":"N. Elom, Obianuju Nwanji, I. Ikelle, J. S. Nworu, C. Chukwu","doi":"10.2478/acmy-2021-0002","DOIUrl":"https://doi.org/10.2478/acmy-2021-0002","url":null,"abstract":"Abstract This study examined potentially toxic elements (PTEs) from poultry feeds. The presence of PTEs in the environment raises health concern because these elements can be toxic, ubiquitous and cannot be degraded to non-toxic forms by any known method and as a result remain in the environment for decades. This is a potential pathway through which these PTEs could easily enter the food chain. Six PTEs (Cd, Cr, Cu, Pb, Mn, Ni and Zn) were determined from four feed types (starter, grower, finisher and layer) from four manufacturers coded A, B, C and D. The samples were prepared, digested and analysed for PTEs using atomic absorption spectrophotometer. The mean concentrations obtained were in the following ranges: 0.49 – 0.76 mg/kg (Cd); 11.9 – 7.90 mg/kg (Cr); 5.10 - 7.91 mg/kg (Cu); 7.17 - 9.47 mg/kg (Pb); 26.9 - 34.9 mg/kg (Mn); 3.80 - 6.50 mg/kg (Ni) and 27.8 - 38.4 mg/kg (Zn). These results were compared with the maximum acceptable concentration for PTEs in feeds as stipulated by the European Union standard and the concentrations of Pb and Ni exceeded maximum acceptable concentration. When concentrations exceed set standard, it implies risk to human health. Thus, the need for continuous monitoring of feed compositions.","PeriodicalId":7114,"journal":{"name":"Acta Chemica Malaysia","volume":"42 1","pages":"6 - 9"},"PeriodicalIF":0.0,"publicationDate":"2020-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78762174","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}