张量对象的随机投影建模

Ryohei Yokobayashi, T. Miura
{"title":"张量对象的随机投影建模","authors":"Ryohei Yokobayashi, T. Miura","doi":"10.1145/3106426.3106504","DOIUrl":null,"url":null,"abstract":"In this investigation, we discuss high order data structure (called tensor) for efficient information retrieval and show especially how well reduction techniques of dimensionality goes while preserving Euclid distance between information. High order data structure requires much amount of space. One of the effective approaches comes from dimensionality reduction such as Latent Semantic Indexing (LSI) and Random Projection (RP) which allows us to reduce complexity of time and space dramatically. The reduction techniques can be applied to high order data structure. Here we examine High Order Random Projection (HORP) which provides us with efficient information retrieval keeping feasible dimensionality reduction.","PeriodicalId":20685,"journal":{"name":"Proceedings of the 7th International Conference on Web Intelligence, Mining and Semantics","volume":"73 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Modeling random projection for tensor objects\",\"authors\":\"Ryohei Yokobayashi, T. Miura\",\"doi\":\"10.1145/3106426.3106504\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this investigation, we discuss high order data structure (called tensor) for efficient information retrieval and show especially how well reduction techniques of dimensionality goes while preserving Euclid distance between information. High order data structure requires much amount of space. One of the effective approaches comes from dimensionality reduction such as Latent Semantic Indexing (LSI) and Random Projection (RP) which allows us to reduce complexity of time and space dramatically. The reduction techniques can be applied to high order data structure. Here we examine High Order Random Projection (HORP) which provides us with efficient information retrieval keeping feasible dimensionality reduction.\",\"PeriodicalId\":20685,\"journal\":{\"name\":\"Proceedings of the 7th International Conference on Web Intelligence, Mining and Semantics\",\"volume\":\"73 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 7th International Conference on Web Intelligence, Mining and Semantics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3106426.3106504\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 7th International Conference on Web Intelligence, Mining and Semantics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3106426.3106504","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在本研究中,我们讨论了用于有效信息检索的高阶数据结构(称为张量),并特别展示了在保持信息之间欧几里得距离的同时,降维技术的效果如何。高阶数据结构需要大量的空间。其中一种有效的降维方法是潜在语义索引(LSI)和随机投影(RP),它们可以显著降低时间和空间的复杂性。这种约简技术可以应用于高阶数据结构。本文研究了高阶随机投影(HORP)算法,它能在保持可行降维的情况下提供有效的信息检索。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Modeling random projection for tensor objects
In this investigation, we discuss high order data structure (called tensor) for efficient information retrieval and show especially how well reduction techniques of dimensionality goes while preserving Euclid distance between information. High order data structure requires much amount of space. One of the effective approaches comes from dimensionality reduction such as Latent Semantic Indexing (LSI) and Random Projection (RP) which allows us to reduce complexity of time and space dramatically. The reduction techniques can be applied to high order data structure. Here we examine High Order Random Projection (HORP) which provides us with efficient information retrieval keeping feasible dimensionality reduction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
WIMS 2020: The 10th International Conference on Web Intelligence, Mining and Semantics, Biarritz, France, June 30 - July 3, 2020 A deep learning approach for web service interactions Partial sums-based P-Rank computation in information networks Mining ordinal data under human response uncertainty Haste makes waste: a case to favour voting bots
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1