Paolo Filippucci, L. Brocca, A. Tarpanelli, C. Massari, W. Wagner, C. Saltalippi
{"title":"基于sm2rain的自校准降雨产品研究","authors":"Paolo Filippucci, L. Brocca, A. Tarpanelli, C. Massari, W. Wagner, C. Saltalippi","doi":"10.5194/EGUSPHERE-EGU21-9639","DOIUrl":null,"url":null,"abstract":"Reliable and detailed precipitation measurements are fundamental in many hydrological and hydraulic applications. In-situ measurements are the traditional source of this information, but the declining number of stations worldwide, the low spatial representativeness and the problems in data access, limit their relevance. In the last years, satellite products have been used to fill the gap of the ground data.","PeriodicalId":22413,"journal":{"name":"The EGU General Assembly","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Toward Self-calibrated SM2RAIN-based rainfall product \",\"authors\":\"Paolo Filippucci, L. Brocca, A. Tarpanelli, C. Massari, W. Wagner, C. Saltalippi\",\"doi\":\"10.5194/EGUSPHERE-EGU21-9639\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reliable and detailed precipitation measurements are fundamental in many hydrological and hydraulic applications. In-situ measurements are the traditional source of this information, but the declining number of stations worldwide, the low spatial representativeness and the problems in data access, limit their relevance. In the last years, satellite products have been used to fill the gap of the ground data.\",\"PeriodicalId\":22413,\"journal\":{\"name\":\"The EGU General Assembly\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The EGU General Assembly\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5194/EGUSPHERE-EGU21-9639\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The EGU General Assembly","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/EGUSPHERE-EGU21-9639","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Reliable and detailed precipitation measurements are fundamental in many hydrological and hydraulic applications. In-situ measurements are the traditional source of this information, but the declining number of stations worldwide, the low spatial representativeness and the problems in data access, limit their relevance. In the last years, satellite products have been used to fill the gap of the ground data.