铁螯合和铁的有效性在ppix诱导的光动力治疗中的重要性

A. Curnow, A. Pye
{"title":"铁螯合和铁的有效性在ppix诱导的光动力治疗中的重要性","authors":"A. Curnow, A. Pye","doi":"10.1515/plm-2014-0034","DOIUrl":null,"url":null,"abstract":"Abstract Background: Protoporphyrin IX (PpIX)-induced photodynamic therapy (PDT) is being utilised as a topical method of localised ablation of certain non-melanoma skin cancers and precancers. Standardised protocols have been implemented to good effect when the disease remains superficial but improvement is required to treat thicker or acrally located conditions. Concurrent administration of an iron chelator during PpIX-PDT has been demonstrated to increase cellular accumulation of PpIX by reducing its bioconversion to haem (an iron dependent process) thus increasing cell kill on subsequent irradiation. Iron however, can also play a role in reactive oxygen species (ROS) generation and limiting its availability via chemical chelation could theoretically reduce the efficacy of PpIX-PDT, so that a response less than that maximally feasible is produced. Materials and methods: The effects of iron availability and chelation on PpIX-PDT have therefore been investigated via fluorescence quantification of PpIX accumulation, single-cell gel electrophoresis (comet assay) measurement of ROS-induced DNA damage and trypan blue exclusion assessment of cell viability. Cultured human cells were utilised and incubated in standardised iron conditions with the PpIX precursor’s aminolaevulinic acid (ALA) or its methyl ester (MAL) in the presence or absence of either of the iron chelating agents desferrioxamine (DFO) or hydroxypyridinone (CP94), or alternatively iron sulphate as a source of iron. Results: ALA or MAL incubation was found to significantly increase cellular PpIX accumulation pre-irradiation as anticipated and this observation correlated with both significantly increased DNA damage and reduced cellular viability following irradiation. Co-incubation with either of the iron chelators investigated (DFO or CP94) significantly increased pre-irradiation PpIX accumulation as well as DNA damage and cell death on irradiation indicating the positive effect of iron chelation on the effectiveness of PpIX-induced PDT. The opposite effects were observed however, when the cells were co-incubated with iron sulphate, with significant reductions in pre-irradiation PpIX accumulation (ALA only) and DNA damage (ALA and MAL) being recorded indicating the negative effects excessive iron can have on PpIX-PDT effectiveness. Some dark toxicity produced by iron sulphate administration in non-irradiated control groups was also observed. Conclusion: Iron chelation and availability have therefore been observed to positively and adversely affect the PpIX-PDT process respectively and it is concluded that the effects of increased PpIX accumulation pre-irradiation produced via iron chelation outweigh any limitations reduced iron availability may have on the ability of iron to catalyse ROS generation/cascades following PpIX-induced PDT. Further investigation of iron chelation within dermatological applications where enhanced PpIX-PDT treatment effects would be beneficial is therefore warranted.","PeriodicalId":20126,"journal":{"name":"Photonics & Lasers in Medicine","volume":"18 1","pages":"39 - 58"},"PeriodicalIF":0.0000,"publicationDate":"2015-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"The importance of iron chelation and iron availability during PpIX-induced photodynamic therapy\",\"authors\":\"A. Curnow, A. Pye\",\"doi\":\"10.1515/plm-2014-0034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Background: Protoporphyrin IX (PpIX)-induced photodynamic therapy (PDT) is being utilised as a topical method of localised ablation of certain non-melanoma skin cancers and precancers. Standardised protocols have been implemented to good effect when the disease remains superficial but improvement is required to treat thicker or acrally located conditions. Concurrent administration of an iron chelator during PpIX-PDT has been demonstrated to increase cellular accumulation of PpIX by reducing its bioconversion to haem (an iron dependent process) thus increasing cell kill on subsequent irradiation. Iron however, can also play a role in reactive oxygen species (ROS) generation and limiting its availability via chemical chelation could theoretically reduce the efficacy of PpIX-PDT, so that a response less than that maximally feasible is produced. Materials and methods: The effects of iron availability and chelation on PpIX-PDT have therefore been investigated via fluorescence quantification of PpIX accumulation, single-cell gel electrophoresis (comet assay) measurement of ROS-induced DNA damage and trypan blue exclusion assessment of cell viability. Cultured human cells were utilised and incubated in standardised iron conditions with the PpIX precursor’s aminolaevulinic acid (ALA) or its methyl ester (MAL) in the presence or absence of either of the iron chelating agents desferrioxamine (DFO) or hydroxypyridinone (CP94), or alternatively iron sulphate as a source of iron. Results: ALA or MAL incubation was found to significantly increase cellular PpIX accumulation pre-irradiation as anticipated and this observation correlated with both significantly increased DNA damage and reduced cellular viability following irradiation. Co-incubation with either of the iron chelators investigated (DFO or CP94) significantly increased pre-irradiation PpIX accumulation as well as DNA damage and cell death on irradiation indicating the positive effect of iron chelation on the effectiveness of PpIX-induced PDT. The opposite effects were observed however, when the cells were co-incubated with iron sulphate, with significant reductions in pre-irradiation PpIX accumulation (ALA only) and DNA damage (ALA and MAL) being recorded indicating the negative effects excessive iron can have on PpIX-PDT effectiveness. Some dark toxicity produced by iron sulphate administration in non-irradiated control groups was also observed. Conclusion: Iron chelation and availability have therefore been observed to positively and adversely affect the PpIX-PDT process respectively and it is concluded that the effects of increased PpIX accumulation pre-irradiation produced via iron chelation outweigh any limitations reduced iron availability may have on the ability of iron to catalyse ROS generation/cascades following PpIX-induced PDT. Further investigation of iron chelation within dermatological applications where enhanced PpIX-PDT treatment effects would be beneficial is therefore warranted.\",\"PeriodicalId\":20126,\"journal\":{\"name\":\"Photonics & Lasers in Medicine\",\"volume\":\"18 1\",\"pages\":\"39 - 58\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Photonics & Lasers in Medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/plm-2014-0034\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photonics & Lasers in Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/plm-2014-0034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

背景:原卟啉IX (PpIX)诱导的光动力疗法(PDT)正被用作局部消融某些非黑色素瘤皮肤癌和癌前病变的局部方法。当疾病仍然是表面的,但需要改进治疗较厚或确切位置的条件时,标准化方案已经实施,效果良好。在PpIX- pdt期间同时使用铁螯合剂已被证明通过减少PpIX向血红素的生物转化(铁依赖过程)来增加PpIX的细胞积累,从而增加随后照射的细胞杀伤。然而,铁也可以在活性氧(ROS)的产生中发挥作用,并且通过化学螯合限制其可用性理论上可以降低PpIX-PDT的功效,从而产生低于最大可行的反应。材料和方法:因此,通过PpIX积累的荧光定量、ros诱导的DNA损伤的单细胞凝胶电泳(彗星测定)和细胞活力的台锥蓝排除评估,研究了铁的可用性和螯合对PpIX- pdt的影响。培养的人类细胞在标准铁条件下与PpIX前体的氨基乙酰丙酸(ALA)或其甲酯(MAL)在铁螯合剂去铁三胺(DFO)或羟吡啶酮(CP94)的存在或不存在,或硫酸铁作为铁的来源。结果:正如预期的那样,ALA或MAL的孵育显著增加了辐照前细胞PpIX的积累,这一观察结果与辐照后DNA损伤的显著增加和细胞活力的降低相关。与所研究的铁螯合剂(DFO或CP94)共孵育显著增加辐照前PpIX的积累以及辐照下的DNA损伤和细胞死亡,这表明铁螯合剂对PpIX诱导的PDT的有效性有积极作用。然而,当细胞与硫酸铁共孵育时,观察到相反的效果,辐照前PpIX积累(仅ALA)和DNA损伤(ALA和MAL)显著减少,这表明过量的铁可能对PpIX- pdt的有效性产生负面影响。在未辐照的对照组中也观察到硫酸铁的暗毒性。因此,铁螯合作用和铁可获得性分别对PpIX-PDT过程产生积极和消极的影响,因此,通过铁螯合作用产生的PpIX积累增加的影响超过了铁可获得性降低可能对PpIX诱导PDT后铁催化ROS生成/级联反应能力的任何限制。因此,进一步研究铁螯合在皮肤病学应用中的作用,增强PpIX-PDT治疗效果将是有益的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The importance of iron chelation and iron availability during PpIX-induced photodynamic therapy
Abstract Background: Protoporphyrin IX (PpIX)-induced photodynamic therapy (PDT) is being utilised as a topical method of localised ablation of certain non-melanoma skin cancers and precancers. Standardised protocols have been implemented to good effect when the disease remains superficial but improvement is required to treat thicker or acrally located conditions. Concurrent administration of an iron chelator during PpIX-PDT has been demonstrated to increase cellular accumulation of PpIX by reducing its bioconversion to haem (an iron dependent process) thus increasing cell kill on subsequent irradiation. Iron however, can also play a role in reactive oxygen species (ROS) generation and limiting its availability via chemical chelation could theoretically reduce the efficacy of PpIX-PDT, so that a response less than that maximally feasible is produced. Materials and methods: The effects of iron availability and chelation on PpIX-PDT have therefore been investigated via fluorescence quantification of PpIX accumulation, single-cell gel electrophoresis (comet assay) measurement of ROS-induced DNA damage and trypan blue exclusion assessment of cell viability. Cultured human cells were utilised and incubated in standardised iron conditions with the PpIX precursor’s aminolaevulinic acid (ALA) or its methyl ester (MAL) in the presence or absence of either of the iron chelating agents desferrioxamine (DFO) or hydroxypyridinone (CP94), or alternatively iron sulphate as a source of iron. Results: ALA or MAL incubation was found to significantly increase cellular PpIX accumulation pre-irradiation as anticipated and this observation correlated with both significantly increased DNA damage and reduced cellular viability following irradiation. Co-incubation with either of the iron chelators investigated (DFO or CP94) significantly increased pre-irradiation PpIX accumulation as well as DNA damage and cell death on irradiation indicating the positive effect of iron chelation on the effectiveness of PpIX-induced PDT. The opposite effects were observed however, when the cells were co-incubated with iron sulphate, with significant reductions in pre-irradiation PpIX accumulation (ALA only) and DNA damage (ALA and MAL) being recorded indicating the negative effects excessive iron can have on PpIX-PDT effectiveness. Some dark toxicity produced by iron sulphate administration in non-irradiated control groups was also observed. Conclusion: Iron chelation and availability have therefore been observed to positively and adversely affect the PpIX-PDT process respectively and it is concluded that the effects of increased PpIX accumulation pre-irradiation produced via iron chelation outweigh any limitations reduced iron availability may have on the ability of iron to catalyse ROS generation/cascades following PpIX-induced PDT. Further investigation of iron chelation within dermatological applications where enhanced PpIX-PDT treatment effects would be beneficial is therefore warranted.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
FLIM and PLIM in biomedical research – An innovative way to combine autofluorescence and oxygen measurements Use of a 1318 nm Nd:YAG laser for the resection of limited forms of pulmonary tuberculosis Can laser therapy be the answer for radiodermatitis in anal cancer patients? Two case reports Hydrogen peroxide detection in viable and apoptotic tumor cells under action of cisplatin and bleomycin LMTB winner of the Innovation Award Berlin Brandenburg 2015
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1