{"title":"利用mBJ电位测定ZnSnP2的电子性质和吸收光谱","authors":"R. Joshi, B. L. Ahuja","doi":"10.1063/1.4918114","DOIUrl":null,"url":null,"abstract":"We present the energy bands and density of states of ZnSnP2 using full potential linearized augmented plane wave method with modified Becke Johnson potential. It is found that this compound has a direct band gap of about 2.01 eV at Γ point, which originates from the energy difference between P-3p and Sn-5s states. In addition, we have also calculated absorption spectra in the solar energy range and compared it with that of bulk Si to explore the applicability of ZnSnP2 in photovoltaic and optoelectronic devices.","PeriodicalId":16850,"journal":{"name":"Journal of Physics C: Solid State Physics","volume":"29 1","pages":"120007"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Electronic properties and absorption spectra of ZnSnP2 using mBJ potential\",\"authors\":\"R. Joshi, B. L. Ahuja\",\"doi\":\"10.1063/1.4918114\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present the energy bands and density of states of ZnSnP2 using full potential linearized augmented plane wave method with modified Becke Johnson potential. It is found that this compound has a direct band gap of about 2.01 eV at Γ point, which originates from the energy difference between P-3p and Sn-5s states. In addition, we have also calculated absorption spectra in the solar energy range and compared it with that of bulk Si to explore the applicability of ZnSnP2 in photovoltaic and optoelectronic devices.\",\"PeriodicalId\":16850,\"journal\":{\"name\":\"Journal of Physics C: Solid State Physics\",\"volume\":\"29 1\",\"pages\":\"120007\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics C: Solid State Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/1.4918114\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics C: Solid State Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/1.4918114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Electronic properties and absorption spectra of ZnSnP2 using mBJ potential
We present the energy bands and density of states of ZnSnP2 using full potential linearized augmented plane wave method with modified Becke Johnson potential. It is found that this compound has a direct band gap of about 2.01 eV at Γ point, which originates from the energy difference between P-3p and Sn-5s states. In addition, we have also calculated absorption spectra in the solar energy range and compared it with that of bulk Si to explore the applicability of ZnSnP2 in photovoltaic and optoelectronic devices.