Wenbin Zhao, Kun Zhang, E. Guo, Lei Zhao, X. Tian, Chang-long Tan
{"title":"Mg-Sc轻量化形状记忆合金马氏体相变机理研究","authors":"Wenbin Zhao, Kun Zhang, E. Guo, Lei Zhao, X. Tian, Chang-long Tan","doi":"10.2139/ssrn.3881302","DOIUrl":null,"url":null,"abstract":"Abstract Mg-Sc alloys are known as novel and promising lightweight shape memory alloys (LWSMAs), which have outstanding performance. Yet, a precise understanding of the microscopic picture and interactions governing the martensitic transformation (MT) remains elusive. We systematically investigate the MT of Mg-Sc alloys using first-principles methods. The result of generalized solid-state nudged elastic band methods confirms that no energy barrier inhibits the MT. We show that the bcc structure of Mg26Sc6 is dynamical instability at 0 K caused by electron-phonon coupling and Fermi surface nesting. Particularly, the high-temperature stability of Mg26Sc6 is revealed for the first time using the temperature-dependent effective potential method. The softening of the acoustic mode at Γ-R corresponds to two neighboring (1 0 1) planes moving towards each other, and forms martensite phase. Our calculations provide the complete and atomic-level mechanism for the MT of Mg-Sc alloys and shed some light on the design of new LWSMAs.","PeriodicalId":7765,"journal":{"name":"AMI: Scripta Materialia","volume":"25 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Martensitic Transformation Mechanism of Mg-Sc Lightweight Shape Memory Alloys\",\"authors\":\"Wenbin Zhao, Kun Zhang, E. Guo, Lei Zhao, X. Tian, Chang-long Tan\",\"doi\":\"10.2139/ssrn.3881302\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Mg-Sc alloys are known as novel and promising lightweight shape memory alloys (LWSMAs), which have outstanding performance. Yet, a precise understanding of the microscopic picture and interactions governing the martensitic transformation (MT) remains elusive. We systematically investigate the MT of Mg-Sc alloys using first-principles methods. The result of generalized solid-state nudged elastic band methods confirms that no energy barrier inhibits the MT. We show that the bcc structure of Mg26Sc6 is dynamical instability at 0 K caused by electron-phonon coupling and Fermi surface nesting. Particularly, the high-temperature stability of Mg26Sc6 is revealed for the first time using the temperature-dependent effective potential method. The softening of the acoustic mode at Γ-R corresponds to two neighboring (1 0 1) planes moving towards each other, and forms martensite phase. Our calculations provide the complete and atomic-level mechanism for the MT of Mg-Sc alloys and shed some light on the design of new LWSMAs.\",\"PeriodicalId\":7765,\"journal\":{\"name\":\"AMI: Scripta Materialia\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AMI: Scripta Materialia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3881302\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMI: Scripta Materialia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3881302","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Martensitic Transformation Mechanism of Mg-Sc Lightweight Shape Memory Alloys
Abstract Mg-Sc alloys are known as novel and promising lightweight shape memory alloys (LWSMAs), which have outstanding performance. Yet, a precise understanding of the microscopic picture and interactions governing the martensitic transformation (MT) remains elusive. We systematically investigate the MT of Mg-Sc alloys using first-principles methods. The result of generalized solid-state nudged elastic band methods confirms that no energy barrier inhibits the MT. We show that the bcc structure of Mg26Sc6 is dynamical instability at 0 K caused by electron-phonon coupling and Fermi surface nesting. Particularly, the high-temperature stability of Mg26Sc6 is revealed for the first time using the temperature-dependent effective potential method. The softening of the acoustic mode at Γ-R corresponds to two neighboring (1 0 1) planes moving towards each other, and forms martensite phase. Our calculations provide the complete and atomic-level mechanism for the MT of Mg-Sc alloys and shed some light on the design of new LWSMAs.