Lucas Woltmann, Patrick Damme, Claudio Hartmann, Dirk Habich, Wolfgang Lehner
{"title":"轻量级整数压缩算法的学习选择策略","authors":"Lucas Woltmann, Patrick Damme, Claudio Hartmann, Dirk Habich, Wolfgang Lehner","doi":"10.48786/edbt.2023.47","DOIUrl":null,"url":null,"abstract":"Data compression has recently experienced a revival in the domain of in-memory column stores. In this field, a large corpus of lightweight integer compression algorithms plays a dominant role since all columns are typically encoded as sequences of integer values. Unfortunately, there is no single-best integer compression algorithm and the best algorithm depends on data and hardware properties. For this reason, selecting the best-fitting integer compression algorithm becomes more important and is an interesting tuning knob for optimization. However, traditional selection strategies require a profound knowledge of the (de-)compression algorithms for decision-making. This limits the broad applicability of the selection strategies. To counteract this, we propose a novel learned selection strategy by consider-ing integer compression algorithms as independent black boxes. This black-box approach ensures broad applicability and requires machine learning-based methods to model the required knowledge for decision-making. Most importantly, we show that a local approach, where every algorithm is modeled individually, plays a crucial role. Moreover, our learned selection strategy is generalized by user-data-independence. Finally, we evaluate our approach and compare our approach against existing selection strategies to show the benefits of our learned selection strategy .","PeriodicalId":88813,"journal":{"name":"Advances in database technology : proceedings. International Conference on Extending Database Technology","volume":"77 1","pages":"552-564"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Learned Selection Strategy for Lightweight Integer Compression Algorithms\",\"authors\":\"Lucas Woltmann, Patrick Damme, Claudio Hartmann, Dirk Habich, Wolfgang Lehner\",\"doi\":\"10.48786/edbt.2023.47\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data compression has recently experienced a revival in the domain of in-memory column stores. In this field, a large corpus of lightweight integer compression algorithms plays a dominant role since all columns are typically encoded as sequences of integer values. Unfortunately, there is no single-best integer compression algorithm and the best algorithm depends on data and hardware properties. For this reason, selecting the best-fitting integer compression algorithm becomes more important and is an interesting tuning knob for optimization. However, traditional selection strategies require a profound knowledge of the (de-)compression algorithms for decision-making. This limits the broad applicability of the selection strategies. To counteract this, we propose a novel learned selection strategy by consider-ing integer compression algorithms as independent black boxes. This black-box approach ensures broad applicability and requires machine learning-based methods to model the required knowledge for decision-making. Most importantly, we show that a local approach, where every algorithm is modeled individually, plays a crucial role. Moreover, our learned selection strategy is generalized by user-data-independence. Finally, we evaluate our approach and compare our approach against existing selection strategies to show the benefits of our learned selection strategy .\",\"PeriodicalId\":88813,\"journal\":{\"name\":\"Advances in database technology : proceedings. International Conference on Extending Database Technology\",\"volume\":\"77 1\",\"pages\":\"552-564\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in database technology : proceedings. International Conference on Extending Database Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48786/edbt.2023.47\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in database technology : proceedings. International Conference on Extending Database Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48786/edbt.2023.47","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Learned Selection Strategy for Lightweight Integer Compression Algorithms
Data compression has recently experienced a revival in the domain of in-memory column stores. In this field, a large corpus of lightweight integer compression algorithms plays a dominant role since all columns are typically encoded as sequences of integer values. Unfortunately, there is no single-best integer compression algorithm and the best algorithm depends on data and hardware properties. For this reason, selecting the best-fitting integer compression algorithm becomes more important and is an interesting tuning knob for optimization. However, traditional selection strategies require a profound knowledge of the (de-)compression algorithms for decision-making. This limits the broad applicability of the selection strategies. To counteract this, we propose a novel learned selection strategy by consider-ing integer compression algorithms as independent black boxes. This black-box approach ensures broad applicability and requires machine learning-based methods to model the required knowledge for decision-making. Most importantly, we show that a local approach, where every algorithm is modeled individually, plays a crucial role. Moreover, our learned selection strategy is generalized by user-data-independence. Finally, we evaluate our approach and compare our approach against existing selection strategies to show the benefits of our learned selection strategy .