{"title":"AD4ML:为制造业指定机器学习解决方案的公理设计","authors":"Alejandro Gabriel Villanueva Zacarias, Rachaa Ghabri, P. Reimann","doi":"10.1109/IRI49571.2020.00029","DOIUrl":null,"url":null,"abstract":"Machine learning is increasingly adopted in manufacturing use cases, e.g., for fault detection in a production line. Each new use case requires developing its own machine learning (ML) solution. A ML solution integrates different software components to read, process, and analyze all use case data, as well as to finally generate the output that domain experts need for their decision-making. The process to design a system specification for a ML solution is not straight-forward. It entails two types of complexity: (1) The technical complexity of selecting combinations of ML algorithms and software components that suit a use case; (2) the organizational complexity of integrating different requirements from a multidisciplinary team of, e.g., domain experts, data scientists, and IT specialists. In this paper, we propose several adaptations to Axiomatic Design in order to design ML solution specifications that handle these complexities. We call this Axiomatic Design for Machine Learning (AD4ML). We apply AD4ML to specify a ML solution for a fault detection use case and discuss to what extent our approach conquers the above-mentioned complexities. We also discuss how AD4ML facilitates the agile design of ML solutions.","PeriodicalId":93159,"journal":{"name":"2020 IEEE 21st International Conference on Information Reuse and Integration for Data Science : IRI 2020 : proceedings : virtual conference, 11-13 August 2020. IEEE International Conference on Information Reuse and Integration (21st : 2...","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"AD4ML: Axiomatic Design to Specify Machine Learning Solutions for Manufacturing\",\"authors\":\"Alejandro Gabriel Villanueva Zacarias, Rachaa Ghabri, P. Reimann\",\"doi\":\"10.1109/IRI49571.2020.00029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Machine learning is increasingly adopted in manufacturing use cases, e.g., for fault detection in a production line. Each new use case requires developing its own machine learning (ML) solution. A ML solution integrates different software components to read, process, and analyze all use case data, as well as to finally generate the output that domain experts need for their decision-making. The process to design a system specification for a ML solution is not straight-forward. It entails two types of complexity: (1) The technical complexity of selecting combinations of ML algorithms and software components that suit a use case; (2) the organizational complexity of integrating different requirements from a multidisciplinary team of, e.g., domain experts, data scientists, and IT specialists. In this paper, we propose several adaptations to Axiomatic Design in order to design ML solution specifications that handle these complexities. We call this Axiomatic Design for Machine Learning (AD4ML). We apply AD4ML to specify a ML solution for a fault detection use case and discuss to what extent our approach conquers the above-mentioned complexities. We also discuss how AD4ML facilitates the agile design of ML solutions.\",\"PeriodicalId\":93159,\"journal\":{\"name\":\"2020 IEEE 21st International Conference on Information Reuse and Integration for Data Science : IRI 2020 : proceedings : virtual conference, 11-13 August 2020. IEEE International Conference on Information Reuse and Integration (21st : 2...\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 21st International Conference on Information Reuse and Integration for Data Science : IRI 2020 : proceedings : virtual conference, 11-13 August 2020. IEEE International Conference on Information Reuse and Integration (21st : 2...\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IRI49571.2020.00029\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 21st International Conference on Information Reuse and Integration for Data Science : IRI 2020 : proceedings : virtual conference, 11-13 August 2020. IEEE International Conference on Information Reuse and Integration (21st : 2...","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRI49571.2020.00029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

机器学习越来越多地应用于制造用例中,例如用于生产线中的故障检测。每个新的用例都需要开发自己的机器学习(ML)解决方案。ML解决方案集成了不同的软件组件来读取、处理和分析所有用例数据,并最终生成领域专家决策所需的输出。为ML解决方案设计系统规范的过程并不是直截了当的。它包含两种类型的复杂性:(1)选择适合用例的ML算法和软件组件组合的技术复杂性;(2)整合来自多学科团队(如领域专家、数据科学家和IT专家)的不同需求的组织复杂性。在本文中,我们提出了对公理设计的一些调整,以便设计处理这些复杂性的ML解决方案规范。我们称之为机器学习公理设计(AD4ML)。我们应用AD4ML为故障检测用例指定ML解决方案,并讨论我们的方法在多大程度上克服了上述复杂性。我们还讨论了AD4ML如何促进ML解决方案的敏捷设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
AD4ML: Axiomatic Design to Specify Machine Learning Solutions for Manufacturing
Machine learning is increasingly adopted in manufacturing use cases, e.g., for fault detection in a production line. Each new use case requires developing its own machine learning (ML) solution. A ML solution integrates different software components to read, process, and analyze all use case data, as well as to finally generate the output that domain experts need for their decision-making. The process to design a system specification for a ML solution is not straight-forward. It entails two types of complexity: (1) The technical complexity of selecting combinations of ML algorithms and software components that suit a use case; (2) the organizational complexity of integrating different requirements from a multidisciplinary team of, e.g., domain experts, data scientists, and IT specialists. In this paper, we propose several adaptations to Axiomatic Design in order to design ML solution specifications that handle these complexities. We call this Axiomatic Design for Machine Learning (AD4ML). We apply AD4ML to specify a ML solution for a fault detection use case and discuss to what extent our approach conquers the above-mentioned complexities. We also discuss how AD4ML facilitates the agile design of ML solutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Attention-Guided Generative Adversarial Network to Address Atypical Anatomy in Synthetic CT Generation. Natural Language-based Integration of Online Review Datasets for Identification of Sex Trafficking Businesses. An Adaptive and Dynamic Biosensor Epidemic Model for COVID-19 Relating the Empirical Foundations of Attack Generation and Vulnerability Discovery Latent Feature Modelling for Recommender Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1