基于深度学习的木炭产地自动识别

IF 1.2 4区 农林科学 Q3 MATERIALS SCIENCE, PAPER & WOOD Maderas-ciencia Y Tecnologia Pub Date : 2021-09-01 DOI:10.4067/s0718-221x2021000100465
Ricardo Rodrigues de Oliveira, Larissa Ferreira Rodrigues, J. F. Mari, Murilo Coelho Naldi, Emerson Gomes Milagres, Benedito Rocha Vital, Angélica de Cássia Oliveira Carneiro, Daniel Henrique Breda Binoti, Pablo Falco Lopes, Hélio Garcia Leite
{"title":"基于深度学习的木炭产地自动识别","authors":"Ricardo Rodrigues de Oliveira, Larissa Ferreira Rodrigues, J. F. Mari, Murilo Coelho Naldi, Emerson Gomes Milagres, Benedito Rocha Vital, Angélica de Cássia Oliveira Carneiro, Daniel Henrique Breda Binoti, Pablo Falco Lopes, Hélio Garcia Leite","doi":"10.4067/s0718-221x2021000100465","DOIUrl":null,"url":null,"abstract":"The differentiation between the charcoal produced from (Eucalyptus) plantations and native forests is essential to control, commercialization, and supervision of its production in Brazil. The main contribution of this study is to identify the charcoal origin using macroscopic images and Deep Learning Algorithm. We applied a Convolutional Neural Network (CNN) using VGG-16 architecture, with preprocessing based on contrast enhancement and data augmentation with rotation over the training set images. on the performance of the CNN with fine-tuning using 360 macroscopic charcoal images from the plantation and native forests. The results pointed out that our method provides new perspectives to identify the charcoal origin, achieving results upper 95 % of mean accuracy to classify charcoal from native forests for all compared preprocessing strategies.","PeriodicalId":18092,"journal":{"name":"Maderas-ciencia Y Tecnologia","volume":"18 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Automatic identification of charcoal origin based on deep learning\",\"authors\":\"Ricardo Rodrigues de Oliveira, Larissa Ferreira Rodrigues, J. F. Mari, Murilo Coelho Naldi, Emerson Gomes Milagres, Benedito Rocha Vital, Angélica de Cássia Oliveira Carneiro, Daniel Henrique Breda Binoti, Pablo Falco Lopes, Hélio Garcia Leite\",\"doi\":\"10.4067/s0718-221x2021000100465\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The differentiation between the charcoal produced from (Eucalyptus) plantations and native forests is essential to control, commercialization, and supervision of its production in Brazil. The main contribution of this study is to identify the charcoal origin using macroscopic images and Deep Learning Algorithm. We applied a Convolutional Neural Network (CNN) using VGG-16 architecture, with preprocessing based on contrast enhancement and data augmentation with rotation over the training set images. on the performance of the CNN with fine-tuning using 360 macroscopic charcoal images from the plantation and native forests. The results pointed out that our method provides new perspectives to identify the charcoal origin, achieving results upper 95 % of mean accuracy to classify charcoal from native forests for all compared preprocessing strategies.\",\"PeriodicalId\":18092,\"journal\":{\"name\":\"Maderas-ciencia Y Tecnologia\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2021-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Maderas-ciencia Y Tecnologia\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.4067/s0718-221x2021000100465\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, PAPER & WOOD\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Maderas-ciencia Y Tecnologia","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.4067/s0718-221x2021000100465","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, PAPER & WOOD","Score":null,"Total":0}
引用次数: 3

摘要

在巴西,区分桉树人工林和原生森林生产的木炭对其生产的控制、商业化和监督至关重要。本研究的主要贡献是利用宏观图像和深度学习算法识别木炭来源。我们使用了一个使用VGG-16架构的卷积神经网络(CNN),在训练集图像上进行了基于对比度增强和旋转的数据增强的预处理。利用人工林和原生林的360度宏观木炭图像,对CNN的性能进行了微调。结果表明,我们的方法为鉴定木炭来源提供了新的视角,在所有预处理策略的对比中,对原始森林木炭的分类准确率都达到了95%以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Automatic identification of charcoal origin based on deep learning
The differentiation between the charcoal produced from (Eucalyptus) plantations and native forests is essential to control, commercialization, and supervision of its production in Brazil. The main contribution of this study is to identify the charcoal origin using macroscopic images and Deep Learning Algorithm. We applied a Convolutional Neural Network (CNN) using VGG-16 architecture, with preprocessing based on contrast enhancement and data augmentation with rotation over the training set images. on the performance of the CNN with fine-tuning using 360 macroscopic charcoal images from the plantation and native forests. The results pointed out that our method provides new perspectives to identify the charcoal origin, achieving results upper 95 % of mean accuracy to classify charcoal from native forests for all compared preprocessing strategies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Maderas-ciencia Y Tecnologia
Maderas-ciencia Y Tecnologia 工程技术-材料科学:纸与木材
CiteScore
2.60
自引率
13.30%
发文量
33
审稿时长
>12 weeks
期刊介绍: Maderas-Cienc Tecnol publishes inedits and original research articles in Spanish and English. The contributions for their publication should be unpublished and the journal is reserved all the rights of reproduction of the content of the same ones. All the articles are subjected to evaluation to the Publishing Committee or external consultants. At least two reviewers under double blind system. Previous acceptance of the Publishing Committee, summaries of thesis of Magíster and Doctorate are also published, technical opinions, revision of books and reports of congresses, related with the Science and the Technology of the Wood. The journal have not articles processing and submission charges.
期刊最新文献
Natural durability of some hardwoods imported into Korea for deck boards against decay fungi and subterranean termite in accelerated laboratory tests Research of computerized numerical control laser processing qualities of some wood species used ın the furniture industry Evaluation of bean residues in the production of agglomerated panels Un enfoque de machine learning para la predicción de la calidad de tableros contrachapados Cellulose biosaccharification by Irpex lacteus wood decay fungus
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1