(Mn1−xFex)3.25Ge (x = 0.4)六角形磁体的拓扑霍尔效应

Vishal Kumar, G. Shukla, Nishant Shahi, Sanjay Singh
{"title":"(Mn1−xFex)3.25Ge (x = 0.4)六角形磁体的拓扑霍尔效应","authors":"Vishal Kumar, G. Shukla, Nishant Shahi, Sanjay Singh","doi":"10.1002/pssr.202300174","DOIUrl":null,"url":null,"abstract":"Topologically protected nontrivial spin structures attract significant interest in condensed matter physics for their utilization in low‐power‐consumption spintronics devices, memory devices, etc. The topological Hall effect (THE) is an additional Hall resistivity in the system arising from real‐space Berry curvature picked up by conduction electron passing through the nontrivial spin texture. Compared to expensive neutron diffraction measurements, THE is often used as a cost‐effective tool to investigate nontrivial spin texture in the materials. In the present manuscript, THE in the (Mn1−xFex)3.25Ge (x = 0.4) alloy is studied using magneto‐transport measurements. Maximum THE is found in the system about 0.65 μΩ cm at 150 K, which is in contrast to the pristine Mn3Ge that has zero THE. The strong temperature variation of THE suggests that the noncoplanar spin structure due to competition among the magneto‐crystalline anisotropy, antiferromagnetic coupling, and ferromagnetic exchange interaction is the main source of THE in the present system. Herein, it is shown that chemical doping can be an effective way to induce THE in the material with vanishing THE in its parent phase.","PeriodicalId":20059,"journal":{"name":"physica status solidi (RRL) – Rapid Research Letters","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Topological Hall Effect in (Mn1−xFex)3.25Ge (x = 0.4) Hexagonal Magnet\",\"authors\":\"Vishal Kumar, G. Shukla, Nishant Shahi, Sanjay Singh\",\"doi\":\"10.1002/pssr.202300174\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Topologically protected nontrivial spin structures attract significant interest in condensed matter physics for their utilization in low‐power‐consumption spintronics devices, memory devices, etc. The topological Hall effect (THE) is an additional Hall resistivity in the system arising from real‐space Berry curvature picked up by conduction electron passing through the nontrivial spin texture. Compared to expensive neutron diffraction measurements, THE is often used as a cost‐effective tool to investigate nontrivial spin texture in the materials. In the present manuscript, THE in the (Mn1−xFex)3.25Ge (x = 0.4) alloy is studied using magneto‐transport measurements. Maximum THE is found in the system about 0.65 μΩ cm at 150 K, which is in contrast to the pristine Mn3Ge that has zero THE. The strong temperature variation of THE suggests that the noncoplanar spin structure due to competition among the magneto‐crystalline anisotropy, antiferromagnetic coupling, and ferromagnetic exchange interaction is the main source of THE in the present system. Herein, it is shown that chemical doping can be an effective way to induce THE in the material with vanishing THE in its parent phase.\",\"PeriodicalId\":20059,\"journal\":{\"name\":\"physica status solidi (RRL) – Rapid Research Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"physica status solidi (RRL) – Rapid Research Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/pssr.202300174\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"physica status solidi (RRL) – Rapid Research Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/pssr.202300174","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

拓扑保护的非平凡自旋结构因其在低功耗自旋电子器件、存储器件等中的应用而引起了凝聚态物理领域的极大兴趣。拓扑霍尔效应(The)是系统中一个额外的霍尔电阻率,它是由通过非平凡自旋织构的传导电子所拾取的实空间Berry曲率引起的。与昂贵的中子衍射测量相比,THE通常被用作研究材料中非平凡自旋织构的经济有效的工具。在本文中,使用磁输运测量研究了(Mn1−xFex)3.25Ge (x = 0.4)合金中的the。在150 K时,系统的最大THE约为0.65 μΩ cm,这与原始的Mn3Ge的零THE形成了对比。磁晶各向异性竞争、反铁磁耦合和铁磁交换相互作用导致的非共面自旋结构是当前体系中磁晶的主要来源。研究表明,化学掺杂是一种有效的方法,可以诱导材料中的THE,使其母相中的THE消失。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Topological Hall Effect in (Mn1−xFex)3.25Ge (x = 0.4) Hexagonal Magnet
Topologically protected nontrivial spin structures attract significant interest in condensed matter physics for their utilization in low‐power‐consumption spintronics devices, memory devices, etc. The topological Hall effect (THE) is an additional Hall resistivity in the system arising from real‐space Berry curvature picked up by conduction electron passing through the nontrivial spin texture. Compared to expensive neutron diffraction measurements, THE is often used as a cost‐effective tool to investigate nontrivial spin texture in the materials. In the present manuscript, THE in the (Mn1−xFex)3.25Ge (x = 0.4) alloy is studied using magneto‐transport measurements. Maximum THE is found in the system about 0.65 μΩ cm at 150 K, which is in contrast to the pristine Mn3Ge that has zero THE. The strong temperature variation of THE suggests that the noncoplanar spin structure due to competition among the magneto‐crystalline anisotropy, antiferromagnetic coupling, and ferromagnetic exchange interaction is the main source of THE in the present system. Herein, it is shown that chemical doping can be an effective way to induce THE in the material with vanishing THE in its parent phase.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
InGaN/GaN Hybrid‐Nanostructure Light Emitting Diodes with Emission Wavelength Green and Beyond TiO2‐Based Schottky Diodes as Bidirectional Switches for Bipolar Resistive Memories Electronic, transport and optical properties of potential transparent conductive material Rb2Pb2O3 Low‐threshold Amplified Spontaneous Emission of Dion‐Jacobson Phase Perovskite Films Achieved by Tuning Diamine Cation Size Characteristics of Vertical Transistors on a GaN Substrate Fabricated via Na‐flux Method and Enlargement of the Substrate Surpassing 6 Inches
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1