面向物理人机交互的KUKA LBR IIWA转矩控制研究

Vinay Chawda, G. Niemeyer
{"title":"面向物理人机交互的KUKA LBR IIWA转矩控制研究","authors":"Vinay Chawda, G. Niemeyer","doi":"10.1109/IROS.2017.8206543","DOIUrl":null,"url":null,"abstract":"In this paper we examine joint torque tracking as well as estimation of external torques for the KUKA Lightweight Robot (LBR) IIWA. To support physical human-robot interaction tasks, we need smooth estimation that allows detection of delicate external events and good control to hide inertial forces. Unfortunately a transmission nonlinearity in the motor to joint gearing injects vibrations and limits the performance of the built-in torque controller and observer. We confirm the nonlinearity to be a spatially periodic deflection between the motor and joint. Identification of this behavior allows us to generate more accurate joint position measurements. We also design a matching spatial filter to remove the vibrations from joint torque measurements. Experiments on an LBR IIWA show that compensating for the nonlinearity provides smoother external torque estimates and improves the torque tracking performance. Furthermore, we are able to increase the gain margin more than three fold over the built-in controller.","PeriodicalId":6658,"journal":{"name":"2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","volume":"4 1","pages":"6387-6392"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":"{\"title\":\"Toward torque control of a KUKA LBR IIWA for physical human-robot interaction\",\"authors\":\"Vinay Chawda, G. Niemeyer\",\"doi\":\"10.1109/IROS.2017.8206543\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we examine joint torque tracking as well as estimation of external torques for the KUKA Lightweight Robot (LBR) IIWA. To support physical human-robot interaction tasks, we need smooth estimation that allows detection of delicate external events and good control to hide inertial forces. Unfortunately a transmission nonlinearity in the motor to joint gearing injects vibrations and limits the performance of the built-in torque controller and observer. We confirm the nonlinearity to be a spatially periodic deflection between the motor and joint. Identification of this behavior allows us to generate more accurate joint position measurements. We also design a matching spatial filter to remove the vibrations from joint torque measurements. Experiments on an LBR IIWA show that compensating for the nonlinearity provides smoother external torque estimates and improves the torque tracking performance. Furthermore, we are able to increase the gain margin more than three fold over the built-in controller.\",\"PeriodicalId\":6658,\"journal\":{\"name\":\"2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)\",\"volume\":\"4 1\",\"pages\":\"6387-6392\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IROS.2017.8206543\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.2017.8206543","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

摘要

在本文中,我们研究了KUKA轻型机器人(LBR) IIWA的关节扭矩跟踪和外部扭矩估计。为了支持物理人机交互任务,我们需要平滑估计,允许检测微妙的外部事件和良好的控制来隐藏惯性力。不幸的是,电动机与关节传动装置之间的非线性传递注入了振动,限制了内置转矩控制器和观测器的性能。我们确认非线性是电机和关节之间的空间周期性偏转。这种行为的识别使我们能够产生更准确的关节位置测量。我们还设计了一个匹配的空间滤波器来消除关节扭矩测量中的振动。在LBR IIWA上的实验表明,对非线性进行补偿可以使外转矩估计更平滑,提高了转矩跟踪性能。此外,我们能够将增益边际增加到内置控制器的三倍以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Toward torque control of a KUKA LBR IIWA for physical human-robot interaction
In this paper we examine joint torque tracking as well as estimation of external torques for the KUKA Lightweight Robot (LBR) IIWA. To support physical human-robot interaction tasks, we need smooth estimation that allows detection of delicate external events and good control to hide inertial forces. Unfortunately a transmission nonlinearity in the motor to joint gearing injects vibrations and limits the performance of the built-in torque controller and observer. We confirm the nonlinearity to be a spatially periodic deflection between the motor and joint. Identification of this behavior allows us to generate more accurate joint position measurements. We also design a matching spatial filter to remove the vibrations from joint torque measurements. Experiments on an LBR IIWA show that compensating for the nonlinearity provides smoother external torque estimates and improves the torque tracking performance. Furthermore, we are able to increase the gain margin more than three fold over the built-in controller.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Direct visual SLAM fusing proprioception for a humanoid robot Upper limb motion intent recognition using tactile sensing Soft fluidic rotary actuator with improved actuation properties Underwater 3D structures as semantic landmarks in SONAR mapping Adaptive perception: Learning from sensory predictions to extract object shape with a biomimetic fingertip
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1