基于大数据的企业信用监管机制社会稳定风险研究

IF 3.6 3区 管理学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Journal of Organizational and End User Computing Pub Date : 2022-05-01 DOI:10.4018/joeuc.289223
Tao Meng, Qi Li, Zheng Dong, Feifei Zhao
{"title":"基于大数据的企业信用监管机制社会稳定风险研究","authors":"Tao Meng, Qi Li, Zheng Dong, Feifei Zhao","doi":"10.4018/joeuc.289223","DOIUrl":null,"url":null,"abstract":"The study aims to establish a platform-based enterprise credit supervision mechanism, and combined with big data, accurately evaluate the credit assets of enterprises under the influence of social stability risk, and improve the ability of enterprises to deal with risks. Using descriptive statistical methods, the study shows that most local enterprises exist in the form of micro loans, which promotes the development of local economy to a certain extent, but it is a vicious cycle of economic development; The overall prediction accuracy of the single enterprise risk assessment model under the influence of social stability risk is 65%. Compared with the single algorithm, the prediction accuracy of the integrated algorithm model is significantly improved, and the prediction accuracy can reach 83.5%, the standard deviation of data prediction is small, and the stability of the model is high.","PeriodicalId":49029,"journal":{"name":"Journal of Organizational and End User Computing","volume":"45 1","pages":"1-16"},"PeriodicalIF":3.6000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Research on the Risk of Social Stability of Enterprise Credit Supervision Mechanism Based on Big Data\",\"authors\":\"Tao Meng, Qi Li, Zheng Dong, Feifei Zhao\",\"doi\":\"10.4018/joeuc.289223\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The study aims to establish a platform-based enterprise credit supervision mechanism, and combined with big data, accurately evaluate the credit assets of enterprises under the influence of social stability risk, and improve the ability of enterprises to deal with risks. Using descriptive statistical methods, the study shows that most local enterprises exist in the form of micro loans, which promotes the development of local economy to a certain extent, but it is a vicious cycle of economic development; The overall prediction accuracy of the single enterprise risk assessment model under the influence of social stability risk is 65%. Compared with the single algorithm, the prediction accuracy of the integrated algorithm model is significantly improved, and the prediction accuracy can reach 83.5%, the standard deviation of data prediction is small, and the stability of the model is high.\",\"PeriodicalId\":49029,\"journal\":{\"name\":\"Journal of Organizational and End User Computing\",\"volume\":\"45 1\",\"pages\":\"1-16\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2022-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Organizational and End User Computing\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://doi.org/10.4018/joeuc.289223\",\"RegionNum\":3,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Organizational and End User Computing","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.4018/joeuc.289223","RegionNum":3,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 10

摘要

本研究旨在建立基于平台的企业信用监管机制,结合大数据,准确评估企业在社会稳定风险影响下的信用资产,提高企业应对风险的能力。采用描述性统计方法,研究表明,大多数地方企业以小额贷款的形式存在,在一定程度上促进了地方经济的发展,但这是一种经济发展的恶性循环;社会稳定风险影响下的单一企业风险评估模型总体预测准确率为65%。与单一算法相比,集成算法模型的预测精度显著提高,预测精度可达83.5%,数据预测标准差小,模型稳定性高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Research on the Risk of Social Stability of Enterprise Credit Supervision Mechanism Based on Big Data
The study aims to establish a platform-based enterprise credit supervision mechanism, and combined with big data, accurately evaluate the credit assets of enterprises under the influence of social stability risk, and improve the ability of enterprises to deal with risks. Using descriptive statistical methods, the study shows that most local enterprises exist in the form of micro loans, which promotes the development of local economy to a certain extent, but it is a vicious cycle of economic development; The overall prediction accuracy of the single enterprise risk assessment model under the influence of social stability risk is 65%. Compared with the single algorithm, the prediction accuracy of the integrated algorithm model is significantly improved, and the prediction accuracy can reach 83.5%, the standard deviation of data prediction is small, and the stability of the model is high.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Organizational and End User Computing
Journal of Organizational and End User Computing COMPUTER SCIENCE, INFORMATION SYSTEMS-
CiteScore
6.00
自引率
9.20%
发文量
77
期刊介绍: The Journal of Organizational and End User Computing (JOEUC) provides a forum to information technology educators, researchers, and practitioners to advance the practice and understanding of organizational and end user computing. The journal features a major emphasis on how to increase organizational and end user productivity and performance, and how to achieve organizational strategic and competitive advantage. JOEUC publishes full-length research manuscripts, insightful research and practice notes, and case studies from all areas of organizational and end user computing that are selected after a rigorous blind review by experts in the field.
期刊最新文献
Cross-Checking-Based Trademark Image Retrieval for Hot Company Detection E-Commerce Review Sentiment Analysis and Purchase Intention Prediction Based on Deep Learning Technology Financial Cycle With Text Information Embedding Based on LDA Measurement and Nowcasting Enhancing Innovation Management and Venture Capital Evaluation via Advanced Deep Learning Techniques Going Global in the Digital Era
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1