论不同形式局部放电的特点及其相关术语

R. Bartnikas, J. Novak
{"title":"论不同形式局部放电的特点及其相关术语","authors":"R. Bartnikas, J. Novak","doi":"10.1109/14.249369","DOIUrl":null,"url":null,"abstract":"Experimentally obtained partial discharge pulse forms are compared with those derived theoretically, using a mathematical model of a short gap. The calculations indicate that, with overvolted short gaps, the apparent absence of the protracted ion current tail in the overall pulse form is due to the large excess of the electron current component generated by strongly enhanced cathode emission by the photoeffect and other phenomena. Under conditions of high overvoltage the ion-impact-induced emission, the ion fluxes and, consequently, the ion current component are greatly reduced as compared to the electron current. The long ion current tail, representing not more than a few percent of the total current, passes undetected. Pulseless and pseudo-glow discharges are considered. Preferred terms to designate the different forms of partial discharges are suggested. >","PeriodicalId":13105,"journal":{"name":"IEEE Transactions on Electrical Insulation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1993-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"97","resultStr":"{\"title\":\"On the character of different forms of partial discharge and their related terminologies\",\"authors\":\"R. Bartnikas, J. Novak\",\"doi\":\"10.1109/14.249369\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Experimentally obtained partial discharge pulse forms are compared with those derived theoretically, using a mathematical model of a short gap. The calculations indicate that, with overvolted short gaps, the apparent absence of the protracted ion current tail in the overall pulse form is due to the large excess of the electron current component generated by strongly enhanced cathode emission by the photoeffect and other phenomena. Under conditions of high overvoltage the ion-impact-induced emission, the ion fluxes and, consequently, the ion current component are greatly reduced as compared to the electron current. The long ion current tail, representing not more than a few percent of the total current, passes undetected. Pulseless and pseudo-glow discharges are considered. Preferred terms to designate the different forms of partial discharges are suggested. >\",\"PeriodicalId\":13105,\"journal\":{\"name\":\"IEEE Transactions on Electrical Insulation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"97\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Electrical Insulation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/14.249369\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Electrical Insulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/14.249369","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 97

摘要

利用短间隙的数学模型,将实验得到的局部放电脉冲形式与理论推导的部分放电脉冲形式进行了比较。计算结果表明,在过电压短间隙下,整个脉冲形式中明显没有离子电流尾,这是由于光电效应和其他现象强烈增强阴极发射所产生的电子电流分量大量过剩所致。在高过电压条件下,离子冲击诱导发射,离子通量,因此,离子电流成分大大减少,相比于电子电流。长离子电流尾巴,代表不超过总电流的百分之几,未被检测到。考虑了无脉冲和伪辉光放电。提出了指定不同形式的局部放电的首选术语。>
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
On the character of different forms of partial discharge and their related terminologies
Experimentally obtained partial discharge pulse forms are compared with those derived theoretically, using a mathematical model of a short gap. The calculations indicate that, with overvolted short gaps, the apparent absence of the protracted ion current tail in the overall pulse form is due to the large excess of the electron current component generated by strongly enhanced cathode emission by the photoeffect and other phenomena. Under conditions of high overvoltage the ion-impact-induced emission, the ion fluxes and, consequently, the ion current component are greatly reduced as compared to the electron current. The long ion current tail, representing not more than a few percent of the total current, passes undetected. Pulseless and pseudo-glow discharges are considered. Preferred terms to designate the different forms of partial discharges are suggested. >
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The effect of the definition used in measuring partial discharge inception voltages Detection and location of internal defects in the insulation of power transformers The definitions used for partial discharge phenomena The relation between thermal and electrical stress and the PD behavior of epoxy-resin transformers Digital measurement of partial discharges in full-sized power capacitors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1