室内应用经验测距误差模型及高效协同定位

Shenghong Li, M. Hedley, I. Collings
{"title":"室内应用经验测距误差模型及高效协同定位","authors":"Shenghong Li, M. Hedley, I. Collings","doi":"10.1109/ICCW.2015.7247275","DOIUrl":null,"url":null,"abstract":"Distributed belief propagation is a promising technology for cooperative localization. Difficulties with belief propagation lie in achieving high accuracy without causing high communication overhead and computational complexity. In this paper, we propose an efficient cooperative localization algorithm based on distributed belief propagation and a new empirical indoor ranging error model, which can be applied to indoor localization systems with non-Gaussian ranging error distributions. To reduce the communication overhead and computational complexity, the algorithm passes approximate beliefs represented by Gaussian distributions between neighbours and uses an analytical approximation to compute peer-to-peer messages. The proposed algorithm is validated on an indoor localization system deployed with 28 nodes covering 8000 m2, and is shown to outperform existing algorithms.","PeriodicalId":6464,"journal":{"name":"2015 IEEE International Conference on Communication Workshop (ICCW)","volume":"13 1","pages":"773-778"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"An empirical ranging error model and efficient cooperative positioning for indoor applications\",\"authors\":\"Shenghong Li, M. Hedley, I. Collings\",\"doi\":\"10.1109/ICCW.2015.7247275\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Distributed belief propagation is a promising technology for cooperative localization. Difficulties with belief propagation lie in achieving high accuracy without causing high communication overhead and computational complexity. In this paper, we propose an efficient cooperative localization algorithm based on distributed belief propagation and a new empirical indoor ranging error model, which can be applied to indoor localization systems with non-Gaussian ranging error distributions. To reduce the communication overhead and computational complexity, the algorithm passes approximate beliefs represented by Gaussian distributions between neighbours and uses an analytical approximation to compute peer-to-peer messages. The proposed algorithm is validated on an indoor localization system deployed with 28 nodes covering 8000 m2, and is shown to outperform existing algorithms.\",\"PeriodicalId\":6464,\"journal\":{\"name\":\"2015 IEEE International Conference on Communication Workshop (ICCW)\",\"volume\":\"13 1\",\"pages\":\"773-778\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Communication Workshop (ICCW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCW.2015.7247275\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Communication Workshop (ICCW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCW.2015.7247275","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

分布式信念传播是一种很有前途的协同定位技术。信念传播的难点在于在不造成高通信开销和计算复杂度的情况下实现高精度。本文提出了一种基于分布式信念传播的高效协同定位算法和一种新的室内测距误差经验模型,该模型可应用于非高斯测距误差分布的室内定位系统。为了降低通信开销和计算复杂度,该算法在邻居之间传递由高斯分布表示的近似信念,并使用解析近似来计算点对点消息。该算法在一个室内定位系统上进行了验证,该系统部署了28个节点,覆盖了8000平方米,结果表明该算法优于现有算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An empirical ranging error model and efficient cooperative positioning for indoor applications
Distributed belief propagation is a promising technology for cooperative localization. Difficulties with belief propagation lie in achieving high accuracy without causing high communication overhead and computational complexity. In this paper, we propose an efficient cooperative localization algorithm based on distributed belief propagation and a new empirical indoor ranging error model, which can be applied to indoor localization systems with non-Gaussian ranging error distributions. To reduce the communication overhead and computational complexity, the algorithm passes approximate beliefs represented by Gaussian distributions between neighbours and uses an analytical approximation to compute peer-to-peer messages. The proposed algorithm is validated on an indoor localization system deployed with 28 nodes covering 8000 m2, and is shown to outperform existing algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
CI/DS-CDMA scheme for autonomous underwater vehicle communication Optimising OFDM based visible light communication for high throughput and reduced PAPR A channel sensing based design for LTE in unlicensed bands Local and cooperative spectrum sensing via Kuiper's test Delay-aware energy-efficient communications over Nakagami-m fading channel with MMPP traffic
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1