{"title":"具有面外位移的硅微扬声器","authors":"C. Glacer, A. Dehé, D. Tumpold, R. Laur","doi":"10.1109/NEMS.2014.6908749","DOIUrl":null,"url":null,"abstract":"In this paper a new way of increasing the enclosed air volume between the stator and the membrane of an electrostatic loudspeaker is introduced. Instead of using a thicker sacrificial layer, a stress-induced self-raising of the stator is utilized. Corrugation grooves in combination with highly tensile silicon nitride rings are causing a deflection of the stator after the release etch. For a stator diameter of 1 mm an out of plane deflection of up to 59 μm could be measured. On the electrical side, a pull-in voltage between 4 V and 16 V for the membrane and 27 V to 67 V for different stator variants was detected. In the free-field, a sound pressure level of 50 dB SPL at 10 kHz in 10 cm distance was measured for a small array. Variations of design and layout as well as technology parameters were varied to determine the ideal system with regard to maximum deflection, displaced volume and mechanical stability.","PeriodicalId":22566,"journal":{"name":"The 9th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS)","volume":"1 1","pages":"12-16"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Silicon microspeaker with out-of-plane displacement\",\"authors\":\"C. Glacer, A. Dehé, D. Tumpold, R. Laur\",\"doi\":\"10.1109/NEMS.2014.6908749\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper a new way of increasing the enclosed air volume between the stator and the membrane of an electrostatic loudspeaker is introduced. Instead of using a thicker sacrificial layer, a stress-induced self-raising of the stator is utilized. Corrugation grooves in combination with highly tensile silicon nitride rings are causing a deflection of the stator after the release etch. For a stator diameter of 1 mm an out of plane deflection of up to 59 μm could be measured. On the electrical side, a pull-in voltage between 4 V and 16 V for the membrane and 27 V to 67 V for different stator variants was detected. In the free-field, a sound pressure level of 50 dB SPL at 10 kHz in 10 cm distance was measured for a small array. Variations of design and layout as well as technology parameters were varied to determine the ideal system with regard to maximum deflection, displaced volume and mechanical stability.\",\"PeriodicalId\":22566,\"journal\":{\"name\":\"The 9th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS)\",\"volume\":\"1 1\",\"pages\":\"12-16\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 9th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NEMS.2014.6908749\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 9th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEMS.2014.6908749","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
摘要
本文介绍了一种增加静电扬声器定子与膜间封闭风量的新方法。代替使用较厚的牺牲层,利用应力诱导的定子自升。波纹槽与高强度氮化硅环相结合,在释放蚀刻后引起定子的偏转。对于直径为1mm的定子,可以测量到最大59 μm的面外偏转。在电气方面,检测到膜的拉入电压在4 V到16 V之间,不同定子变体的拉入电压在27 V到67 V之间。在自由场中,测量了一个小型阵列在10 cm距离上的声压级,声压级为50 dB SPL。设计和布局的变化以及技术参数的变化,以确定关于最大挠度,位移体积和机械稳定性的理想系统。
Silicon microspeaker with out-of-plane displacement
In this paper a new way of increasing the enclosed air volume between the stator and the membrane of an electrostatic loudspeaker is introduced. Instead of using a thicker sacrificial layer, a stress-induced self-raising of the stator is utilized. Corrugation grooves in combination with highly tensile silicon nitride rings are causing a deflection of the stator after the release etch. For a stator diameter of 1 mm an out of plane deflection of up to 59 μm could be measured. On the electrical side, a pull-in voltage between 4 V and 16 V for the membrane and 27 V to 67 V for different stator variants was detected. In the free-field, a sound pressure level of 50 dB SPL at 10 kHz in 10 cm distance was measured for a small array. Variations of design and layout as well as technology parameters were varied to determine the ideal system with regard to maximum deflection, displaced volume and mechanical stability.