Liangliang Liu, L. Ran, Huadong Guo, Xinlei Chen, Zhuo Li
{"title":"由通道多米诺欺骗等离子体实现的宽带等离子体电路","authors":"Liangliang Liu, L. Ran, Huadong Guo, Xinlei Chen, Zhuo Li","doi":"10.2528/pier18120502","DOIUrl":null,"url":null,"abstract":"Building of compact plasmonic integrated circuits based on domino spoof plasmons (DSPs) is an important requirement and still a challenge. In this work, we report the first demonstration of two kinds of channel domino plasmonic circuitries, which consist of an easy-to-manufacture periodic chain of metallic box-shaped elements inside two finite metallic plates. We reveal that only the channel DSPs itself rather than the hybrid TE10 and DSPs modes is supported in the part of the channel domino plasmonic waveguide with or without the metallic vias on both sides. Two channel domino plasmonic filters based on the efficient transition structures are designed, and the simulated Sparameters and near electric field distributions show excellent transmission performance in broadband. Utilizing the lateral insensitive property of these two channel DSPs, two kinds of broadband plasmonic power dividers/combiners are firstly implemented. Excellent transmission performance validates our optimizations and indicates that the proposed scheme can be easily extended to other bands. This work provides a new route for construction of deep-subwavelength DSP devices in application of high integration of microwave and terahertz circuits.","PeriodicalId":90705,"journal":{"name":"Progress in Electromagnetics Research Symposium : [proceedings]. Progress in Electromagnetics Research Symposium","volume":"36 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"BROADBAND PLASMONIC CIRCUITRY ENABLED BY CHANNEL DOMINO SPOOF PLASMONS\",\"authors\":\"Liangliang Liu, L. Ran, Huadong Guo, Xinlei Chen, Zhuo Li\",\"doi\":\"10.2528/pier18120502\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Building of compact plasmonic integrated circuits based on domino spoof plasmons (DSPs) is an important requirement and still a challenge. In this work, we report the first demonstration of two kinds of channel domino plasmonic circuitries, which consist of an easy-to-manufacture periodic chain of metallic box-shaped elements inside two finite metallic plates. We reveal that only the channel DSPs itself rather than the hybrid TE10 and DSPs modes is supported in the part of the channel domino plasmonic waveguide with or without the metallic vias on both sides. Two channel domino plasmonic filters based on the efficient transition structures are designed, and the simulated Sparameters and near electric field distributions show excellent transmission performance in broadband. Utilizing the lateral insensitive property of these two channel DSPs, two kinds of broadband plasmonic power dividers/combiners are firstly implemented. Excellent transmission performance validates our optimizations and indicates that the proposed scheme can be easily extended to other bands. This work provides a new route for construction of deep-subwavelength DSP devices in application of high integration of microwave and terahertz circuits.\",\"PeriodicalId\":90705,\"journal\":{\"name\":\"Progress in Electromagnetics Research Symposium : [proceedings]. Progress in Electromagnetics Research Symposium\",\"volume\":\"36 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Electromagnetics Research Symposium : [proceedings]. Progress in Electromagnetics Research Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2528/pier18120502\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Electromagnetics Research Symposium : [proceedings]. Progress in Electromagnetics Research Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2528/pier18120502","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
BROADBAND PLASMONIC CIRCUITRY ENABLED BY CHANNEL DOMINO SPOOF PLASMONS
Building of compact plasmonic integrated circuits based on domino spoof plasmons (DSPs) is an important requirement and still a challenge. In this work, we report the first demonstration of two kinds of channel domino plasmonic circuitries, which consist of an easy-to-manufacture periodic chain of metallic box-shaped elements inside two finite metallic plates. We reveal that only the channel DSPs itself rather than the hybrid TE10 and DSPs modes is supported in the part of the channel domino plasmonic waveguide with or without the metallic vias on both sides. Two channel domino plasmonic filters based on the efficient transition structures are designed, and the simulated Sparameters and near electric field distributions show excellent transmission performance in broadband. Utilizing the lateral insensitive property of these two channel DSPs, two kinds of broadband plasmonic power dividers/combiners are firstly implemented. Excellent transmission performance validates our optimizations and indicates that the proposed scheme can be easily extended to other bands. This work provides a new route for construction of deep-subwavelength DSP devices in application of high integration of microwave and terahertz circuits.