{"title":"器件电热模型在毫米波倍频器设计中的应用","authors":"C. Pérez-Moreno, J. Grajal","doi":"10.1109/IRMMW-THz46771.2020.9370725","DOIUrl":null,"url":null,"abstract":"We present the application of two electro-thermal models developed for Schottky diodes to the design of millimeterwave frequency multipliers. First, we use a physics-based numerical self-consistent electro-thermal model integrated into a harmonic-balance code to obtain the diode physical parameters that optimize the multiplier performance. Then, we employ an analytical self-consistent electro-thermal model implemented into commercial circuit design software to determine the complete multiplier layout that optimizes the overall performance. The design and test of a tripler circuit with output frequency in the 75–105 GHz band validates the proposed methodology.","PeriodicalId":6746,"journal":{"name":"2020 45th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz)","volume":"10 1","pages":"1-2"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of Device Electro-Thermal Models to the Design of Millimeter-Wave Frequency Multipliers\",\"authors\":\"C. Pérez-Moreno, J. Grajal\",\"doi\":\"10.1109/IRMMW-THz46771.2020.9370725\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present the application of two electro-thermal models developed for Schottky diodes to the design of millimeterwave frequency multipliers. First, we use a physics-based numerical self-consistent electro-thermal model integrated into a harmonic-balance code to obtain the diode physical parameters that optimize the multiplier performance. Then, we employ an analytical self-consistent electro-thermal model implemented into commercial circuit design software to determine the complete multiplier layout that optimizes the overall performance. The design and test of a tripler circuit with output frequency in the 75–105 GHz band validates the proposed methodology.\",\"PeriodicalId\":6746,\"journal\":{\"name\":\"2020 45th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz)\",\"volume\":\"10 1\",\"pages\":\"1-2\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 45th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IRMMW-THz46771.2020.9370725\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 45th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRMMW-THz46771.2020.9370725","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Application of Device Electro-Thermal Models to the Design of Millimeter-Wave Frequency Multipliers
We present the application of two electro-thermal models developed for Schottky diodes to the design of millimeterwave frequency multipliers. First, we use a physics-based numerical self-consistent electro-thermal model integrated into a harmonic-balance code to obtain the diode physical parameters that optimize the multiplier performance. Then, we employ an analytical self-consistent electro-thermal model implemented into commercial circuit design software to determine the complete multiplier layout that optimizes the overall performance. The design and test of a tripler circuit with output frequency in the 75–105 GHz band validates the proposed methodology.